[BCIKS20] Proximity Gaps 论文 soundness 解析
论文 [BCIKS20] 对 [BBHR18] 中的 FRI 协议的 soundness 进行了改进,主要分析了 batched FRI 的情况。本文将详细解析 [BCIKS20] 论文中关于 batched FRI soundness 的内容。
Introduction ¶ 在交互证明,分布式存储以及密码学等背景下,出现了各种协议,这些协议引出了关于一个线性编码 V ⊂ F q n V \subset \mathbb{F}_q^n V ⊂ F q n 的 proximity 问题,其中 F q \mathbb{F}_q F q 是有限域,V V V 的最小的相对距离为 δ V \delta_V δ V 。这些协议假设我们可以获得关于一批向量 u = { u 0 , ⋯ , u l } ⊂ F q n \textbf{u} = \{u_0, \cdots, u_l \} \subset \mathbb{F}_q^n u = { u 0 , ⋯ , u l } ⊂ F q n 的 oracle,它们的 soundness 要求每个向量 u i u_i u i 在相对 Hamming 距离上接近 V V V 。另外,soundness 是某些向量到 code V V V 之间的最大距离的一个函数,如果这个距离变大,那么 Verifier 拒绝的概率会降低。因此,我们想找到这样的协议,能够最小化对 u \mathbf{u} u 中元素的 query 的数量,同时最大化能识别某个向量 u i u_i u i 明显远离 V V V 的概率。
❓ 疑问
由于 V V V 的线性性,一个自然的方法([RVW13])是:在 span(u \textbf{u} u )(即 u \textbf{u} u 中各元素的线性组合) 中均匀地随机一个向量 u ′ u' u ′ ,记 u ′ u' u ′ 与 V V V 之间的距离为 Δ ( u ′ , V ) \Delta(u', V) Δ ( u ′ , V ) ,将这个距离视为 u \textbf{u} u 中某些元素与 V V V 之间的最大距离的一个 proxy(代理)。为了证明 soundness ,我们想要即使只有一个 u i u_i u i 距离 V V V 中的所有元素有 δ-远,那么随机选择的 u ′ u' u ′ 也距离 V V V 很远。
在下文中,用 Δ 表示相对 Hamming 距离。当 Δ ( u , v ) ≤ δ \Delta(u, v) \le \delta Δ ( u , v ) ≤ δ 对某个 v ∈ V v \in V v ∈ V 成立时,称为 “ u u u 与 V V V 的距离有 δ -近”,记作 Δ ( u , V ) ≤ δ \Delta(u, V) \le \delta Δ ( u , V ) ≤ δ ;否则称为 “ u u u 与 V V V 的距离有 δ -远”,记作 Δ ( u , V ) > δ \Delta(u, V) > \delta Δ ( u , V ) > δ 。
关于这个问题,一些研究结果为:
[AHIV17] 如果 δ < δ V / 4 \delta < \delta_V /4 δ < δ V /4 ,几乎所有的 u ′ ∈ span ( u ) u' \in \text{span}(\mathbf{u}) u ′ ∈ span ( u ) 距离 V V V 有 δ -远。 [RZ18] 将上述结果提高到 δ < δ V / 3 \delta < \delta_V /3 δ < δ V /3 。 [BKS18] 提高到 δ < 1 − 1 − δ V 4 \delta < 1 - \sqrt[4]{1 - \delta_V} δ < 1 − 4 1 − δ V 。 [BGKS20] 提高到 δ < 1 − 1 − δ V 3 \delta < 1 - \sqrt[3]{1 - \delta_V} δ < 1 − 3 1 − δ V ,但这个界对 RS 编码是 tight 的,因为当 n = q n = q n = q 时可以达到这个界。 🤔 思考
目前我们关心的一个问题是:对于哪些码以及什么范围的 δ ,以下的陈述成立?
如果某个 u ∗ ∈ span ( u ) u^* \in \text{span}(\mathbf{u}) u ∗ ∈ span ( u ) 与 V V V 有 δ -远,那么对于几乎所有的 u ′ ∈ span ( u ) u' \in \text{span}(\mathbf{u}) u ′ ∈ span ( u ) ,u ′ u' u ′ 与 V V V 也有 δ -远。
[BCIKS20] 论文的主要结论之一表明,当 V V V 是一个在足够大的域上的 RS 码(域的大小与码的块长度呈多项式关系)并且 δ 小于 Johnson/Guruswami-Sudan list decoding 界时,上述陈述成立。接下来,我们称其为 proximity gap 。
Proximity Gaps ¶ 先给出 Proximity Gaps 的定义。
Definition 1.1 [BCIKS20, Definition 1.1] (Proximity gap). Let P ⊂ Σ n P \subset \Sigma^n P ⊂ Σ n be a property and C ⊂ 2 Σ n C \subset 2^{\Sigma^n} C ⊂ 2 Σ n be a collection of sets. Let Δ be a distance measure on Σ n \Sigma^n Σ n . We say that C C C displays a ( δ , ϵ ) (\delta, \epsilon) ( δ , ϵ ) -proximity gap with respect to P P P under Δ if every S ∈ C S \in C S ∈ C satisfies exactly one of the following:
Pr s ∈ S [ Δ ( s , P ) ≤ δ ] = 1 \Pr_{s \in S} [\Delta(s, P) \le \delta] = 1 Pr s ∈ S [ Δ ( s , P ) ≤ δ ] = 1 .Pr s ∈ S [ Δ ( s , P ) ≤ δ ] ≤ ϵ \Pr_{s \in S} [\Delta(s, P) \le \delta] \le \epsilon Pr s ∈ S [ Δ ( s , P ) ≤ δ ] ≤ ϵ .We call δ the proximity parameter and ε is the error parameter. By default, Δ denotes the relative Hamming distance measure.
对于 RS code ,如果 V ⊂ F n V \subset \mathbb{F}^n V ⊂ F n 是 RS 编码 ,对应上述定义中的 P P P ,并且 A ⊂ F n A \subset \mathbb{F}^n A ⊂ F n 是一个 affine space (仿射空间) ,对应于上述定义中的 S S S ,那么要么 A A A 中的所有元素离 V V V 有 δ -近,要么 A A A 中的几乎所有元素离 V V V 有 δ -远。换句话说,不会有这样的 affine space A A A ,其中大概一半的元素离 V V V 比较近,但同时另一半元素离 V V V 比较远。
如下图所示,A A A 是一个 affine space,这里用一条线表示,编码空间 V V V 中的元素用黑色的点表示,以这些点为圆心,以 δ 为半径画圆。那么只有两种情况:
线 A A A 上的所有元素都落入了绿色的圆形区域内。
线上只有少量的元素落入了绿色的圆形区域内。
A A A 中的元素不可能一半在圆形区域内,一半在圆形区域外,这也是 gap 的含义,将 A A A 中的所有元素落入的情况分成了恰好分成了两种情况,而这两种情况之间根据相对 Hamming 距离形成了一个巨大的 gap 。
在下文中,用 F q \mathbb{F}_q F q 表示大小为 q q q 的有限域,RS [ F q , D , k ] \text{RS}[\mathbb{F}_q,\mathcal{D},k] RS [ F q , D , k ] 表示维数为 k + 1 k+1 k + 1 ,块长度(blocklength) 为 n = ∣ D ∣ n = |\mathcal{D}| n = ∣ D ∣ 的 RS 编码,其码字是在 D \mathcal{D} D 上求值(evaluated),次数 ≤ k \le k ≤ k 的多项式。用 ρ 表示码率, 则 ρ = k + 1 n \rho = \frac{k+1}{n} ρ = n k + 1 。δ 表示相对于 RS code 的相对 Hamming 距离,ε 表示 error 参数,也就是一个“坏事件(bad event)”发生的概率。
下面给出 RS code 的 Proximity gaps 定理。
Theorem 1.2 [BCIKS20, Theorem 1.2] (Proximity gap for RS codes). The collection C Affine C_{\text{Affine}} C Affine of affine spaces in F q n \mathbb{F}_q^n F q n displays a ( δ , ϵ ) (\delta, \epsilon) ( δ , ϵ ) -proximity gap with respect to the RS code V : = RS [ F q , D , k ] V := \text{RS}[\mathbb{F}_q, \mathcal{D}, k] V := RS [ F q , D , k ] of blocklength n n n and rate ρ = k + 1 n \rho = \frac{k+1}{n} ρ = n k + 1 , for any δ ∈ ( 0 , 1 − ρ ) \delta \in (0, 1 - \sqrt{\rho}) δ ∈ ( 0 , 1 − ρ ) , and ϵ = ϵ ( q , n , ρ , δ ) \epsilon = \epsilon(q, n, \rho, \delta) ϵ = ϵ ( q , n , ρ , δ ) defined as the following piecewise function:
Unique decoding bound: For δ ∈ ( 0 , 1 − ρ 2 ] \delta \in (0,\frac{1 - \rho}{2}] δ ∈ ( 0 , 2 1 − ρ ] , the error parameter ε is ϵ = ϵ U = ϵ U ( q , n ) : = n q (1.1) \epsilon = \epsilon_\text{U} = \epsilon_\text{U}(q, n) := \frac{n}{q} \tag{1.1} ϵ = ϵ U = ϵ U ( q , n ) := q n ( 1.1 ) List decoding bound: For δ ∈ ( 1 − ρ 2 , 1 − ρ ) \delta \in (\frac{1 - \rho}{2}, 1 - \sqrt{\rho}) δ ∈ ( 2 1 − ρ , 1 − ρ ) , setting η : = 1 − ρ − δ \eta := 1 - \sqrt{\rho} - \delta η := 1 − ρ − δ , the error parameter ε is ϵ = ϵ J = ϵ J ( q , n , ρ , δ ) : = ( k + 1 ) 2 ( 2 min ( η , ρ 20 ) 7 ) q = O ( 1 ( η ρ ) O ( 1 ) ⋅ n 2 q ) (1.2) \epsilon = \epsilon_\text{J} = \epsilon_\text{J}(q, n, \rho, \delta) := \frac{(k+1)^2}{\left(2 \min \left(\eta, \frac{\sqrt{\rho}}{20}\right)^7\right)q} = O \left(\frac{1}{(\eta \rho)^{O(1)}} \cdot \frac{n^2}{q} \right) \tag{1.2} ϵ = ϵ J = ϵ J ( q , n , ρ , δ ) := ( 2 min ( η , 20 ρ ) 7 ) q ( k + 1 ) 2 = O ( ( η ρ ) O ( 1 ) 1 ⋅ q n 2 ) ( 1.2 ) 🤔 Question
论文中证明的主要定理是 correlated agreement ,对于在 F D \mathbb{F}^{\mathcal{D}} F D 中的两个向量 u 0 , u 1 ∈ F D u_0, u_1 \in \mathbb{F}^{\mathcal{D}} u 0 , u 1 ∈ F D ,在 F \mathbb{F} F 中选一个随机数 z z z ,我们关心用 z z z 进行线性组合后的 u 0 + z u 1 u_0 + zu_1 u 0 + z u 1 所形成的空间与 V V V 之间的距离,也就是一维的 affine space A = { u 0 + z u 1 : z ∈ F } A = \{u_0 + z u_1 : z \in \mathbb{F}\} A = { u 0 + z u 1 : z ∈ F } 。correlated agreement 结论说的是如果在 A A A 中有足够多的元素距离 RS code 空间 V V V 足够近( δ - 近),那么一定存在一个非平凡的 subdomain D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D ,其大小至少是 D \mathcal{D} D 大小的 1 − δ 1 - \delta 1 − δ 倍,使得限制 u 0 , u 1 u_0, u_1 u 0 , u 1 在 D ′ \mathcal{D}' D ′ 上,有有效的 RS code v 0 , v 1 v_0, v_1 v 0 , v 1 ,满足它们分别在 D ′ \mathcal{D}' D ′ 上与 u 0 , u 1 u_0, u_1 u 0 , u 1 一致。我们就说这样的 D ′ \mathcal{D}' D ′ 有 correlated agreement 性质,即 u 0 , u 1 u_0, u_1 u 0 , u 1 和 A A A 中的元素不仅分别与 RS 码有很大的 agreement ,而且还共享一个共同的很大的 agreement 集合。这个结果有两个参数范围,一个是 unique decoding 范围内的 proximity 参数,另一个是 list decoding 范围内的 proximity 参数。
以下给出了三种情况的 correlated agreement。结合论文中其他关于 correlated agreement 的结论,如下表所示。
空间 U U U Δ u ( u , V ) \Delta_u(u,V) Δ u ( u , V ) Δ u ( u , V ) \Delta_u(u,V) Δ u ( u , V ) unique decodingΔ u ( u , V ) \Delta_u(u,V) Δ u ( u , V ) list decodingagree μ ( u , V ) \text{agree}_{\mu}(u,V) agree μ ( u , V ) lines { u 0 + z u 1 : z ∈ F } \{u_0 + z u_1 : z \in \mathbb{F}\} { u 0 + z u 1 : z ∈ F } Theorem 1.4 Theorem 4.1 Theorem 5.1 & Theorem 5.2 low-degree parameterized curves curve ( u ) = { u z : = ∑ i = 0 l z i ⋅ u i ∣ z ∈ F q } \text{curve}(\mathbf{u}) = \left\{u_z: = \sum_{i = 0}^{l}z^i \cdot u_i | z \in \mathbb{F}_q \right\} curve ( u ) = { u z := ∑ i = 0 l z i ⋅ u i ∣ z ∈ F q } Theorem 1.5 Theorem 6.1 Theorem 6.2 Theorem 7.1 & Theorem 7.2(Johnson bound 更精确版本) affine spaces u 0 + span { u 1 , ⋯ , u l } u_0 + \text{span}\{u_1, \cdots, u_l\} u 0 + span { u 1 , ⋯ , u l } Theorem 1.6 Theorem 7.3 & Theorem 7.4(Johnson bound 更精确版本)
下面三个定理分别对应线、低次参数曲线以及 affine spaces 的 correlated agreement 定理。
Theorem 1.4 [BSCIK20, Theorem 1.4] (Main Theorem - Correlated agreement over lines). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. For u 0 , u 1 ∈ F q D u_0, u_1 \in \mathbb{F}_q^{\mathcal{D}} u 0 , u 1 ∈ F q D , if δ ∈ ( 0 , 1 − ρ ) \delta \in (0, 1 - \sqrt{\rho}) δ ∈ ( 0 , 1 − ρ ) and
Pr z ∈ F q [ Δ ( u 0 + z ⋅ u 1 , V ) ≤ δ ] > ϵ , \Pr_{z \in \mathbb{F}_q} [\Delta(u_0 + z \cdot u_1, V) \le \delta] > \epsilon, z ∈ F q Pr [ Δ ( u 0 + z ⋅ u 1 , V ) ≤ δ ] > ϵ , where ε is as defined in Theorem 1.2, then there exist D ′ ⊂ D D' \subset D D ′ ⊂ D and v 0 , v 1 ∈ V v_0, v_1 \in V v 0 , v 1 ∈ V satisfying
Density : ∣ D ′ ∣ / ∣ D ∣ ≥ 1 − δ |D'|/|D| \ge 1 - \delta ∣ D ′ ∣/∣ D ∣ ≥ 1 − δ , andAgreement : v 0 v_0 v 0 agrees with u 0 u_0 u 0 and v 1 v_1 v 1 agrees with u 1 u_1 u 1 on all of D ′ D' D ′ .令 u = { u 0 , … , u l } ⊂ F q D \mathbf{u} = \{u_0, \ldots, u_l \} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , … , u l } ⊂ F q D ,则次数为 l l l 的 parameterized curve 是由 u \mathbf{u} u 生成的如下的在 F q D \mathbb{F}_q^{\mathcal{D}} F q D 中的向量的集合,
curve ( u ) : = { u z : = ∑ i = 0 l z i ⋅ u i ∣ z ∈ F q } \text{curve}(\mathbf{u}) := \left\{u_z: = \sum_{i = 0}^{l}z^i \cdot u_i \Bigg| z \in \mathbb{F}_q \right\} curve ( u ) := { u z := i = 0 ∑ l z i ⋅ u i ∣ ∣ z ∈ F q } Theorem 1.5 [BSCIK20, Theorem 1.5] (Correlated agreement for low-degree parameterized curves). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D . If δ ∈ ( 0 , 1 − ρ ) \delta \in (0, 1 - \sqrt{\rho}) δ ∈ ( 0 , 1 − ρ ) and
Pr u ∈ curve ( u ) [ Δ ( u , V ) ≤ δ ] > l ⋅ ϵ , \Pr_{u \in \text{curve}(u)} [\Delta(\mathbf{u}, V) \le \delta] > l \cdot \epsilon, u ∈ curve ( u ) Pr [ Δ ( u , V ) ≤ δ ] > l ⋅ ϵ , where ε is as defined in Theorem 1.2, then there exist D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D and v 0 , ⋯ , v l ∈ V v_0, \cdots, v_l \in V v 0 , ⋯ , v l ∈ V satisfying
Density : ∣ D ′ ∣ / ∣ D ∣ ≥ 1 − δ |\mathcal{D}'|/|\mathcal{D}| \ge 1 - \delta ∣ D ′ ∣/∣ D ∣ ≥ 1 − δ , andAgreement : for all i ∈ { 0 , ⋯ , l } i \in \{0, \cdots, l\} i ∈ { 0 , ⋯ , l } , the functions u i u_i u i and v i v_i v i agree on all of D ′ \mathcal{D}' D ′ .Theorem 1.6 [BSCIK20, Theorem 1.6] (Correlated agreement over affine spaces). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. For u 0 , u 1 , ⋯ , u l ∈ F q D u_0, u_1, \cdots, u_l \in \mathbb{F}_q^{\mathcal{D}} u 0 , u 1 , ⋯ , u l ∈ F q D let U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D U = u_0 + \text{span}\{u_1, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D be an affine subspace. If δ ∈ ( 0 , 1 − ρ ) \delta \in (0, 1 - \sqrt{\rho}) δ ∈ ( 0 , 1 − ρ ) and
Pr u ∈ U [ Δ ( u , V ) ≤ δ ] > ϵ , \Pr_{u \in U} [\Delta(u, V) \le \delta] > \epsilon, u ∈ U Pr [ Δ ( u , V ) ≤ δ ] > ϵ , where ε is as defined in Theorem 1.2, then there exist D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D and v 0 , ⋯ , v l ∈ V v_0, \cdots, v_l \in V v 0 , ⋯ , v l ∈ V satisfying
Density : ∣ D ′ ∣ / ∣ D ∣ ≥ 1 − δ |\mathcal{D}'|/|\mathcal{D}| \ge 1 - \delta ∣ D ′ ∣/∣ D ∣ ≥ 1 − δ , andAgreement : for all i ∈ { 0 , ⋯ , l } i \in \{0, \cdots, l\} i ∈ { 0 , ⋯ , l } , the functions u i u_i u i and v i v_i v i agree on all of D ′ \mathcal{D}' D ′ .Furthermore, in the unique decoding regime δ ∈ ( 0 , 1 − ρ 2 ] \delta \in \left(0, \frac{1 - \rho}{2}\right] δ ∈ ( 0 , 2 1 − ρ ] , there exists a unique maximal D ′ \mathcal{D}' D ′ satisfying the above, with unique v i v_i v i .
如果要分析 FRI 协议的 soundness ,就需要 Theorem 1.5 的 weighted 版本。
对于一个给定的 weight 向量 μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] ,u , v u,v u , v 之间(相对的) μ -agremment 定义为
agree μ ( u , v ) : = 1 ∣ D ∣ ∑ x : u ( x ) = v ( x ) μ ( x ) . \text{agree}_{\mu}(u,v) := \frac{1}{|\mathcal{D}|} \sum_{x:u(x) = v(x)} \mu(x). agree μ ( u , v ) := ∣ D ∣ 1 x : u ( x ) = v ( x ) ∑ μ ( x ) . 也就是在权重 μ 之下看 u u u 与 v v v 在 D \mathcal{D} D 上一致的比例有多少。如果令 μ ≡ 1 \mu \equiv 1 μ ≡ 1 ,那么
agree μ ( u , v ) = 1 ∣ D ∣ ∑ x : u ( x ) = v ( x ) 1 = 1 − 1 ∣ D ∣ ∑ x : u ( x ) ≠ v ( x ) 1 = 1 − Δ ( u , v ) . \text{agree}_{\mu}(u,v) = \frac{1}{|\mathcal{D}|} \sum_{x:u(x) = v(x)} 1 = 1 - \frac{1}{|\mathcal{D}|} \sum_{x:u(x) \neq v(x)} 1 = 1 - \Delta(u,v). agree μ ( u , v ) = ∣ D ∣ 1 x : u ( x ) = v ( x ) ∑ 1 = 1 − ∣ D ∣ 1 x : u ( x ) = v ( x ) ∑ 1 = 1 − Δ ( u , v ) . 一个 word u u u 与一个线性码 V V V 之间的 agreement 为 u u u 与 V V V 之间的一个码字之间的最大的 agreement ,
agree μ ( u , V ) : = max v ∈ V agree μ ( u , v ) . \text{agree}_{\mu}(u,V) := \max_{v \in V} \text{agree}_{\mu}(u,v). agree μ ( u , V ) := v ∈ V max agree μ ( u , v ) . 定义 subdomain D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D 的加权(weighted) 大小为
μ ( D ′ ) : = 1 ∣ D ∣ ∑ x ∈ D ′ μ ( x ) . \mu(\mathcal{D}') := \frac{1}{|\mathcal{D}|}\sum_{x \in \mathcal{D}'} \mu(x). μ ( D ′ ) := ∣ D ∣ 1 x ∈ D ′ ∑ μ ( x ) . 将上面定义中的 D ′ \mathcal{D}' D ′ 定义为 { x ∈ D : u ( x ) = v ( x ) } \{x \in \mathcal{D}: u(x) = v(x)\} { x ∈ D : u ( x ) = v ( x )} ,则 agreement 满足 agree μ ( u , v ) = μ ( { x ∈ D : u ( x ) = v ( x ) } ) \text{agree}_{\mu}(u,v) = \mu(\{x \in \mathcal{D}: u(x) = v(x)\}) agree μ ( u , v ) = μ ({ x ∈ D : u ( x ) = v ( x )}) 。
最后,对于 u = { u 0 , ⋯ , u l } \mathbf{u} = \{u_0, \cdots, u_l\} u = { u 0 , ⋯ , u l } ,其中 u i ∈ F q D u_i \in \mathbb{F}_q^{\mathcal{D}} u i ∈ F q D 是一组 word ,μ -weighted correlated agreement 是 subdomain D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D 的最大 μ -weighted 大小,使得 u \mathbf{u} u 在 D ′ \mathcal{D}' D ′ 上的限制属于 V ∣ D ′ V|_{\mathcal{D}'} V ∣ D ′ ,即对于每个 i = 0 , ⋯ , l i = 0, \cdots, l i = 0 , ⋯ , l ,存在 v i ∈ V v_i \in V v i ∈ V 使得 u i ∣ D ′ = v i ∣ D ′ u_i|_{\mathcal{D}'} = v_i|_{\mathcal{D}'} u i ∣ D ′ = v i ∣ D ′ 。当 μ 未指定时,它被设置为常数权重函数 1 ,这恢复了在前面讨论的 correlated agreement 度量的概念。
接下来,我们假设权重函数 μ 具有某些结构,具体来说,所有权重 μ ( x ) \mu(x) μ ( x ) 都是形式 μ ( x ) = a x M \mu(x) = \frac{a_x}{M} μ ( x ) = M a x ,其中 a x a_x a x 是变化的整数,且有共同的分母 M M M 。对于 FRI soundness 的特殊情况(其中 M M M 等于应用 FRI 协议的 RS 码的 blocklength),这个假设确实成立。以下是定理 1.5 的加权推广。
Theorem 7.1 [BSCIK20, Theorem 7.1] (Weighted correlated agreement over curves – Version I). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D . Let α ∈ ( ρ , 1 ) \alpha \in (\sqrt{\rho}, 1) α ∈ ( ρ , 1 ) and let μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] be a vector of weights, whose values all have denominator M M M . Suppose
Pr u ∈ curve ( u ) [ agree μ ( u , V ) ≥ α ] > l ⋅ ϵ , \Pr_{u \in \text{curve}(\mathbf{u})} [\text{agree}_{\mu}(u,V) \ge \alpha] > l \cdot \epsilon, u ∈ curve ( u ) Pr [ agree μ ( u , V ) ≥ α ] > l ⋅ ϵ , where ε is as defined in Theorem 1.2 (with η = min ( α − ρ , ρ 20 ) \eta = \min(\alpha - \sqrt{\rho}, \frac{\sqrt{\rho}}{20}) η = min ( α − ρ , 20 ρ ) ), and additionally suppose
Pr u ∈ curve ( u ) [ agree μ ( u , V ) ≥ α ] ≥ l ( M ∣ D ∣ + 1 ) q ( 1 η + 3 ρ ) . \Pr_{u \in \text{curve}(\mathbf{u})} [\text{agree}_{\mu}(u,V) \ge \alpha] \ge \frac{l(M|\mathcal{D}|+1)}{q} \left(\frac{1}{\eta} + \frac{3}{\sqrt{\rho}}\right) . u ∈ curve ( u ) Pr [ agree μ ( u , V ) ≥ α ] ≥ q l ( M ∣ D ∣ + 1 ) ( η 1 + ρ 3 ) . Then there exists D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D and v 0 , ⋯ , v l ∈ V v_0, \cdots, v_l \in V v 0 , ⋯ , v l ∈ V satisfying
Density : μ ( D ′ ) ≥ α \mu(\mathcal{D}') \ge \alpha μ ( D ′ ) ≥ α , andAgreement : for all i ∈ { 0 , ⋯ , l } i \in \{0, \cdots, l\} i ∈ { 0 , ⋯ , l } , the functions u i u_i u i and v i v_i v i agree on all of D ′ \mathcal{D}' D ′ .仅适用于 Johnson 界限范围的一种更精确的形式如下。
Theorem 7.2 [BSCIK20, Theorem 7.2] (Weighted correlated agreement over curves – Version II). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D . Let μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] be a vector of weights, whose values all have denominator M M M . Let m ≥ 3 m \ge 3 m ≥ 3 and let
α ≥ α 0 ( ρ , m ) : = ρ + ρ 2 m . \alpha \ge \alpha_0(\rho, m) := \sqrt{\rho} + \frac{\rho}{2m}. α ≥ α 0 ( ρ , m ) := ρ + 2 m ρ . Let
S = { z ∈ F q : agree μ ( u 0 + z u 1 + ⋯ + z l u l , V ) ≥ α } S = \{z \in \mathbb{F}_q : \text{agree}_{\mu}(u_0 + zu_1 + \cdots + z^lu_l, V) \ge \alpha\} S = { z ∈ F q : agree μ ( u 0 + z u 1 + ⋯ + z l u l , V ) ≥ α } and suppose
∣ S ∣ > max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 n 2 l , 2 m + 1 ρ ( M ⋅ n + 1 ) l ) . (7.1) |S| > \max\left(\frac{(1 + \frac{1}{2m})^7 m^7}{3 \rho^{3/2}}n^2 l, \frac{2m + 1}{\sqrt{\rho}}(M \cdot n + 1)l \right) . \tag{7.1} ∣ S ∣ > max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 n 2 l , ρ 2 m + 1 ( M ⋅ n + 1 ) l ) . ( 7.1 ) Then u 0 , … , u l u_0, \ldots, u_l u 0 , … , u l have at least α correlated μ -agreement with V V V , i.e. ∃ v 0 , ⋯ , v l ∈ V \exists v_0, \cdots, v_l \in V ∃ v 0 , ⋯ , v l ∈ V such that
μ ( { x ∈ D : ∀ 0 ≤ i ≤ l , u i ( x ) = v i ( x ) } ) ≥ α . \mu(\{x \in \mathcal{D}: \forall 0 \le i \le l, u_i(x) = v_i(x)\}) \ge \alpha . μ ({ x ∈ D : ∀0 ≤ i ≤ l , u i ( x ) = v i ( x )}) ≥ α . Theorem 7.3 [BSCIK20, Theorem 7.3] (Weighted correlated agreement over affine spaces). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D and let U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D U = u_0 + \text{span}\{u_1, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D be an affine subspace. Let α ∈ ( ρ , 1 ) \alpha \in (\sqrt{\rho}, 1) α ∈ ( ρ , 1 ) and let μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] be a vector of weights, whose values all have denominator M M M . Suppose
Pr u ∈ U [ agree μ ( u , V ) ≥ α ] > ϵ , \Pr_{u \in U} [\text{agree}_{\mu}(u,V) \ge \alpha] > \epsilon, u ∈ U Pr [ agree μ ( u , V ) ≥ α ] > ϵ , where ε is as defined in Theorem 1.2 (with η = min ( α − ρ , ρ 20 ) \eta = \min(\alpha - \sqrt{\rho}, \frac{\sqrt{\rho}}{20}) η = min ( α − ρ , 20 ρ ) ), and additionally suppose
Pr u ∈ U [ agree μ ( u , V ) ≥ α ] ≥ M ∣ D ∣ + 1 q ( 1 η + 3 ρ ) . \Pr_{u \in U} [\text{agree}_{\mu}(u,V) \ge \alpha] \ge \frac{M|\mathcal{D}| + 1}{q} \left(\frac{1}{\eta} + \frac{3}{\sqrt{\rho}}\right) . u ∈ U Pr [ agree μ ( u , V ) ≥ α ] ≥ q M ∣ D ∣ + 1 ( η 1 + ρ 3 ) . Then there exist D ′ ⊂ D \mathcal{D}' \subset \mathcal{D} D ′ ⊂ D and v 0 , ⋯ , v l ∈ V v_0, \cdots, v_l \in V v 0 , ⋯ , v l ∈ V satisfying
μ-Density : μ ( D ′ ) ≥ α \mu(\mathcal{D}') \ge \alpha μ ( D ′ ) ≥ α , andAgreement : for all i ∈ { 0 , ⋯ , l } i \in \{0, \cdots, l\} i ∈ { 0 , ⋯ , l } , the functions u i u_i u i and v i v_i v i agree on all of D ′ \mathcal{D}' D ′ .同样地,对于 Theorem 7.3 也有关于 Johnson 界限的更精确的形式。
Theorem 7.4 [BSCIK20, Theorem 7.4] (Weighted correlated agreement over affine spaces – Version II). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D and let U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D U = u_0 + \text{span}\{u_1, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D be an affine subspace. Let μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] be a vector of weights, whose values all have denominator M M M . Let m ≥ 3 m \ge 3 m ≥ 3 and let
α ≥ α 0 ( ρ , m ) : = ρ + ρ 2 m . \alpha \ge \alpha_0(\rho, m) := \sqrt{\rho} + \frac{\sqrt{\rho}}{2m} . α ≥ α 0 ( ρ , m ) := ρ + 2 m ρ . Suppose
Pr u ∈ U [ agree μ ( u , V ) ≥ α ] > max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 ⋅ n 2 q , 2 m + 1 ρ ⋅ M ⋅ n + 1 q ) . (7.2) \Pr_{u \in U} [\text{agree}_{\mu}(u,V) \ge \alpha] > \max \left( \frac{(1 + \frac{1}{2m})^7m^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}, \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{M \cdot n + 1}{q} \right) . \tag{7.2} u ∈ U Pr [ agree μ ( u , V ) ≥ α ] > max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 ⋅ q n 2 , ρ 2 m + 1 ⋅ q M ⋅ n + 1 ) . ( 7.2 ) Then u 0 , … , u l u_0, \ldots, u_l u 0 , … , u l have at least α correlated μ -agreement with V V V , i.e. ∃ v 0 , ⋯ , v l ∈ V \exists v_0, \cdots, v_l \in V ∃ v 0 , ⋯ , v l ∈ V such that
μ ( { x ∈ D : ∀ 0 ≤ i ≤ l , u i ( x ) = v i ( x ) } ) ≥ α . \mu \left(\{x \in \mathcal{D} : \forall 0 \le i \le l, u_i(x) = v_i(x)\}\right) \ge \alpha . μ ( { x ∈ D : ∀0 ≤ i ≤ l , u i ( x ) = v i ( x )} ) ≥ α . FRI 协议 ¶ FRI 协议的目的是为了在 IOP 模型中,去解决 Reed-Solomon proximity testing 问题,即对于一个接收到的 word f ( 0 ) : D ( 0 ) → F f^{(0)}: \mathcal{D}^{(0)} \rightarrow \mathbb{F} f ( 0 ) : D ( 0 ) → F ,验证它到 V ( 0 ) : = RS [ F , D ( 0 ) , k ( 0 ) ] V^{(0)} := \text{RS}[\mathbb{F}, \mathcal{D}^{(0)}, k^{(0)}] V ( 0 ) := RS [ F , D ( 0 ) , k ( 0 ) ] 之间的 proximity ,如果 f ( 0 ) f^{(0)} f ( 0 ) 属于 V ( 0 ) V^{(0)} V ( 0 ) ,就接受;如果距离 V ( 0 ) V^{(0)} V ( 0 ) 有 δ 远,就拒绝。FRI 协议适用于任何 evaluation domain D ( 0 ) \mathcal{D}^{(0)} D ( 0 ) 是 2-smooth 群 的陪集的情况,即对于任何的 D ( 0 ) \mathcal{D}^{(0)} D ( 0 ) ,其是一个大小为 2 s 2^s 2 s 的(加法或乘法)群的陪集,其中 s s s 是一个整数。因此,为简化描述,假设群 D ( 0 ) \mathcal{D}^{(0)} D ( 0 ) 是乘法的。FRI 协议有两个阶段,分别是 COMMIT 阶段与 QUERY 阶段。
在 COMMIT 阶段,经过有限次 r r r 轮的交互,会生成一系列的函数 f ( 1 ) : D ( 1 ) → F , f ( 2 ) : D ( 2 ) → F , ⋯ , f ( r ) : D ( r ) → F f^{(1)}: \mathcal{D}^{(1)} \rightarrow \mathbb{F}, f^{(2)}: \mathcal{D}^{(2)} \rightarrow \mathbb{F}, \cdots,f^{(r)}: \mathcal{D}^{(r)} \rightarrow \mathbb{F} f ( 1 ) : D ( 1 ) → F , f ( 2 ) : D ( 2 ) → F , ⋯ , f ( r ) : D ( r ) → F 。每一次迭代, domain 的大小 ∣ D ( i ) ∣ |\mathcal{D}^{(i)}| ∣ D ( i ) ∣ 都会缩小。假设对于一个诚实的 prover, f ( 0 ) f^{(0)} f ( 0 ) 是 low-degree ,那么对于每一个 f ( i ) f^{(i)} f ( i ) ,它们也都会是 low-degree 的(见命题 1)。在第 i i i -轮开始时,prover 的消息 f ( i ) : D ( i ) → F f^{(i)}: \mathcal{D}^{(i)} \rightarrow \mathbb{F} f ( i ) : D ( i ) → F 已经生成,并且 verifier 可以访问该消息的 oracle 。Verifier 现在发送一个均匀随机的 z ( i ) ∈ F z^{(i)} \in \mathbb{F} z ( i ) ∈ F ,然后 prover 回复一个新的函数 f ( i + 1 ) : D ( i + 1 ) → F f^{(i+1)}: \mathcal{D}^{(i+1)} \rightarrow \mathbb{F} f ( i + 1 ) : D ( i + 1 ) → F ,其中 D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 是 D ( i ) \mathcal{D}^{(i)} D ( i ) 的一个(2-smooth)strict 子群,意思是 D ( i ) \mathcal{D}^{(i)} D ( i ) 不仅是 D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 的子群,同时也是其真子集。
D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 将 D ( i ) \mathcal{D}^{(i)} D ( i ) 划分成大小为 l ( i ) : = ∣ D ( i ) ∣ / ∣ D ( i + 1 ) ∣ l^{(i)} := |\mathcal{D}^{(i)}|/|\mathcal{D}^{(i+1)}| l ( i ) := ∣ D ( i ) ∣/∣ D ( i + 1 ) ∣ 的陪集。令 C g ( i ) C_g^{(i)} C g ( i ) 表示对应于 g ∈ D ( i + 1 ) g \in \mathcal{D}^{(i+1)} g ∈ D ( i + 1 ) 的陪集,即
C g ( i ) : = { g ′ ∈ D ( i ) ∣ ( g ′ ) l ( i ) = g } . (8.1) C_g^{(i)} := \{g' \in \mathcal{D}^{(i)} \mid (g')^{l^{(i)}} = g\}. \tag{8.1} C g ( i ) := { g ′ ∈ D ( i ) ∣ ( g ′ ) l ( i ) = g } . ( 8.1 ) 意思就是在 D ( i ) \mathcal{D}^{(i)} D ( i ) 中选取那些能够通过映射 q ( x ) = x l ( i ) q(x) = x^{l^{(i)}} q ( x ) = x l ( i ) 映射到 D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 中的 g g g 的元素,这些元素组成了集合 C g ( i ) C_g^{(i)} C g ( i ) ,其也是陪集。
对于每个陪集 C g ( i ) C_g^{(i)} C g ( i ) ,插值映射(interpolation map) M g ( i ) M_g^{(i)} M g ( i ) 是一个可逆的线性映射 M g ( i ) : F C g ( i ) → F l ( i ) M_g^{(i)}: \mathbb{F}^{C_g^{(i)}} \rightarrow \mathbb{F}^{l^{(i)}} M g ( i ) : F C g ( i ) → F l ( i ) ,它将 f ( i ) ∣ C g ( i ) : C g ( i ) → F f^{(i)}|_{C_g^{(i)}}: C_g^{(i)} \rightarrow \mathbb{F} f ( i ) ∣ C g ( i ) : C g ( i ) → F (即限制 f ( i ) f^{(i)} f ( i ) 在 domain C g ( i ) ⊂ D ( i ) C_g^{(i)} \subset \mathcal{D}^{(i)} C g ( i ) ⊂ D ( i ) 上)映射到多项式 P u ( i ) ( g ) ( i ) ( Z ) = ∑ j < l ( i ) u j ( i ) ( g ) Z j P_{\mathbf{u}^{(i)}(g)}^{(i)}(Z) = \sum_{j<l^{(i)}} u_j^{(i)}(g) Z^j P u ( i ) ( g ) ( i ) ( Z ) = ∑ j < l ( i ) u j ( i ) ( g ) Z j 的系数向量 u ( i ) ( g ) = ( u 0 ( i ) ( g ) , … , u l ( i ) − 1 ( i ) ( g ) ) ⊺ \mathbf{u}^{(i)}(g) = (u_0^{(i)}(g), \ldots, u_{l^{(i)}-1}^{(i)}(g))^{\intercal} u ( i ) ( g ) = ( u 0 ( i ) ( g ) , … , u l ( i ) − 1 ( i ) ( g ) ) ⊺ (这里与论文原文表示一致,都表示列向量,不过原文没有加上转置符号),其中 P u ( i ) ( g ) ( i ) ( Z ) P_{\mathbf{u}^{(i)}(g)}^{(i)}(Z) P u ( i ) ( g ) ( i ) ( Z ) 是插值 f ( i ) ∣ C g ( i ) f^{(i)}|_{C_g^{(i)}} f ( i ) ∣ C g ( i ) 的多项式。换句话说,M g ( i ) M_g^{(i)} M g ( i ) 是由 C g ( i ) C_g^{(i)} C g ( i ) 生成的 Vandermonde 矩阵的逆,这意味着 ( M g ( i ) ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ \left(M_g^{(i)}\right)^{-1} \cdot (u_0, \ldots, u_{l^{(i)}-1})^{\intercal} ( M g ( i ) ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ 是多项式 P u ( X ) = ∑ i < l ( i ) u i X i P_{\mathbf{u}}(X) = \sum_{i<l^{(i)}} u_i X^i P u ( X ) = ∑ i < l ( i ) u i X i 在陪集 C g ( i ) C_g^{(i)} C g ( i ) 上的 evaluation 。
👀 Notice
本文为保持前后一致,用 ( x 0 , … , x n ) (x_0, \ldots, x_n) ( x 0 , … , x n ) 表示行向量,而 ( x 0 , … , x n ) ⊺ (x_0, \ldots, x_n)^{\intercal} ( x 0 , … , x n ) ⊺ 表示列向量,也可写为:
$$
[ > x 0 > x 1 > ⋮ > x n > ] \begin{bmatrix}
> x_0\\
> x_1\\
> \vdots\\
> x_n
> \end{bmatrix} ⎣ ⎡ > x 0 > x 1 > ⋮ > x n > ⎦ ⎤ $$
下面详细解释下上面对插值映射的描述。根据 C g ( i ) C_g^{(i)} C g ( i ) 的定义,知道其中的元素有 l ( i ) l^{(i)} l ( i ) 个,设 C g ( i ) = { g 1 ′ , ⋯ , g l ( i ) ′ } C_g^{(i)} =\{g'_1, \cdots, g'_{l^{(i)}}\} C g ( i ) = { g 1 ′ , ⋯ , g l ( i ) ′ } ,我们可以将由 C g ( i ) C_g^{(i)} C g ( i ) 生成的 Vandermonde 矩阵写出来:
V C g ( i ) = [ 1 g 1 ′ ( g 1 ′ ) 2 ⋯ ( g 1 ′ ) l ( i ) − 1 1 g 2 ′ ( g 2 ′ ) 2 ⋯ ( g 2 ′ ) l ( i ) − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 g l ( i ) ′ ( g l ( i ) ′ ) 2 ⋯ ( g l ( i ) ′ ) l ( i ) − 1 ] V_{C_g^{(i)}}=
\begin{bmatrix}
1 & g'_1 & (g'_1)^2 & \cdots & (g'_1)^{l^{(i)}-1} \\
1 & g'_2 & (g'_2)^2 & \cdots & (g'_2)^{l^{(i)}-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & g'_{l^{(i)}} & (g'_{l^{(i)}})^2 & \cdots & (g'_{l^{(i)}})^{l^{(i)}-1}
\end{bmatrix} V C g ( i ) = ⎣ ⎡ 1 1 ⋮ 1 g 1 ′ g 2 ′ ⋮ g l ( i ) ′ ( g 1 ′ ) 2 ( g 2 ′ ) 2 ⋮ ( g l ( i ) ′ ) 2 ⋯ ⋯ ⋱ ⋯ ( g 1 ′ ) l ( i ) − 1 ( g 2 ′ ) l ( i ) − 1 ⋮ ( g l ( i ) ′ ) l ( i ) − 1 ⎦ ⎤ 则 M g ( i ) = V C g ( i ) − 1 M_g^{(i)} = V_{C_g^{(i)}}^{-1} M g ( i ) = V C g ( i ) − 1 ,是由 C g ( i ) C_g^{(i)} C g ( i ) 生成的 Vandermonde 矩阵的逆,因此
( M g ( i ) ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ = ( V C g ( i ) − 1 ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ = V C g ( i ) ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ = [ 1 g 1 ′ ( g 1 ′ ) 2 ⋯ ( g 1 ′ ) l ( i ) − 1 1 g 2 ′ ( g 2 ′ ) 2 ⋯ ( g 2 ′ ) l ( i ) − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 g l ( i ) ′ ( g l ( i ) ′ ) 2 ⋯ ( g l ( i ) ′ ) l ( i ) − 1 ] [ u 0 u 1 ⋮ u l ( i ) − 1 ] = [ u 0 + u 1 g 1 ′ + u 2 ( g 1 ′ ) 2 + ⋯ + u l ( i ) − 1 ( g 1 ′ ) l ( i ) − 1 u 0 + u 1 g 2 ′ + u 2 ( g 2 ′ ) 2 + ⋯ + u l ( i ) − 1 ( g 2 ′ ) l ( i ) − 1 ⋮ u 0 + u 1 g l ( i ) ′ + u 2 ( g l ( i ) ′ ) 2 + ⋯ + u l ( i ) − 1 ( g l ( i ) ′ ) l ( i ) − 1 ] = [ P u ( g 1 ′ ) P u ( g 2 ′ ) ⋮ P u ( g l ( i ) ′ ) ] \begin{aligned}
\left(M_g^{(i)}\right)^{-1} \cdot (u_0, \ldots, u_{l^{(i)}-1})^{\intercal} & = \left(V_{C_g^{(i)}}^{-1}\right)^{-1} \cdot (u_0, \ldots, u_{l^{(i)}-1})^{\intercal} \\
& = V_{C_g^{(i)}} \cdot (u_0, \ldots, u_{l^{(i)}-1})^{\intercal} \\
& =
\begin{bmatrix}
1 & g'_1 & (g'_1)^2 & \cdots & (g'_1)^{l^{(i)}-1} \\
1 & g'_2 & (g'_2)^2 & \cdots & (g'_2)^{l^{(i)}-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & g'_{l^{(i)}} & (g'_{l^{(i)}})^2 & \cdots & (g'_{l^{(i)}})^{l^{(i)}-1}
\end{bmatrix}
\begin{bmatrix}
u_0\\
u_1\\
\vdots\\
u_{l^{(i)}-1}
\end{bmatrix} \\
& = \begin{bmatrix}
u_0 + u_1 g'_1 + u_2 (g'_1)^2 + \cdots + u_{l^{(i)}-1} (g'_1)^{l^{(i)}-1}\\
u_0 + u_1 g'_2 + u_2 (g'_2)^2 + \cdots + u_{l^{(i)}-1} (g'_2)^{l^{(i)}-1}\\
\vdots \\
u_0 + u_1 g'_{l^{(i)}} + u_2 (g'_{l^{(i)}})^2 + \cdots + u_{l^{(i)}-1} (g'_{l^{(i)}})^{l^{(i)}-1}
\end{bmatrix} \\
& = \begin{bmatrix}
P_{\mathbf{u}}(g'_1)\\
P_{\mathbf{u}}(g'_2)\\
\vdots \\
P_{\mathbf{u}}(g'_{l^{(i)}})
\end{bmatrix}
\end{aligned} ( M g ( i ) ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ = ( V C g ( i ) − 1 ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ = V C g ( i ) ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ = ⎣ ⎡ 1 1 ⋮ 1 g 1 ′ g 2 ′ ⋮ g l ( i ) ′ ( g 1 ′ ) 2 ( g 2 ′ ) 2 ⋮ ( g l ( i ) ′ ) 2 ⋯ ⋯ ⋱ ⋯ ( g 1 ′ ) l ( i ) − 1 ( g 2 ′ ) l ( i ) − 1 ⋮ ( g l ( i ) ′ ) l ( i ) − 1 ⎦ ⎤ ⎣ ⎡ u 0 u 1 ⋮ u l ( i ) − 1 ⎦ ⎤ = ⎣ ⎡ u 0 + u 1 g 1 ′ + u 2 ( g 1 ′ ) 2 + ⋯ + u l ( i ) − 1 ( g 1 ′ ) l ( i ) − 1 u 0 + u 1 g 2 ′ + u 2 ( g 2 ′ ) 2 + ⋯ + u l ( i ) − 1 ( g 2 ′ ) l ( i ) − 1 ⋮ u 0 + u 1 g l ( i ) ′ + u 2 ( g l ( i ) ′ ) 2 + ⋯ + u l ( i ) − 1 ( g l ( i ) ′ ) l ( i ) − 1 ⎦ ⎤ = ⎣ ⎡ P u ( g 1 ′ ) P u ( g 2 ′ ) ⋮ P u ( g l ( i ) ′ ) ⎦ ⎤ 通过上述推导看出 ( P u ( g 1 ′ ) , P u ( g 2 ′ ) ⋯ , P u ( g l ( i ) ′ ) ) ⊺ \left(P_{\mathbf{u}}(g'_1), P_{\mathbf{u}}(g'_2) \cdots, P_{\mathbf{u}}(g'_{l^{(i)}}) \right)^{\intercal} ( P u ( g 1 ′ ) , P u ( g 2 ′ ) ⋯ , P u ( g l ( i ) ′ ) ) ⊺ 是多项式 P u ( X ) = ∑ i < l ( i ) u i X i P_{\mathbf{u}}(X) = \sum_{i<l^{(i)}} u_i X^i P u ( X ) = ∑ i < l ( i ) u i X i 在陪集 C g ( i ) C_g^{(i)} C g ( i ) 上的 evaluation ,因此 ( M g ( i ) ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ \left(M_g^{(i)}\right)^{-1} \cdot (u_0, \ldots, u_{l^{(i)}-1})^{\intercal} ( M g ( i ) ) − 1 ⋅ ( u 0 , … , u l ( i ) − 1 ) ⊺ 是多项式 P u ( X ) = ∑ i < l ( i ) u i X i P_{\mathbf{u}}(X) = \sum_{i<l^{(i)}} u_i X^i P u ( X ) = ∑ i < l ( i ) u i X i 在陪集 C g ( i ) C_g^{(i)} C g ( i ) 上的 evaluation 。
下面的命题使用了上述的符号,重新叙述了 [BBHR18, Section 4.1],与 [BBHR18, Section 4.1] 不同的是,是在乘法群而不是加法群上进行的。该命题描述的就是保持 low-degree 的性质。
Claim 1 [BCIKS20, Claim 8.1]. Suppose that f ( i ) ∈ RS [ F , D ( i ) , k ( i ) ] f^{(i)} \in \text{RS}[\mathbb{F}, \mathcal{D}^{(i)}, k^{(i)}] f ( i ) ∈ RS [ F , D ( i ) , k ( i ) ] where k ( i ) + 1 k^{(i)} + 1 k ( i ) + 1 is an integral power of 2 . Then, for any z ( i ) ∈ F z^{(i)} \in \mathbb{F} z ( i ) ∈ F , letting z ( i ) = ( ( z ( i ) ) 0 , ( z ( i ) ) 1 , … , ( z ( i ) ) l ( i ) − 1 ) ⊺ \mathbf{z}^{(i)} = \left(\left(z^{(i)}\right)^0, \left(z^{(i)}\right)^1, \ldots, \left(z^{(i)}\right)^{l^{(i)}-1}\right)^{\intercal} z ( i ) = ( ( z ( i ) ) 0 , ( z ( i ) ) 1 , … , ( z ( i ) ) l ( i ) − 1 ) ⊺ , the function f f ( i ) , z ( i ) ( i + 1 ) : D ( i + 1 ) → F f_{f^{(i)},z^{(i)}}^{(i+1)}: \mathcal{D}^{(i+1)} \rightarrow \mathbb{F} f f ( i ) , z ( i ) ( i + 1 ) : D ( i + 1 ) → F defined on g ∈ D ( i + 1 ) g \in \mathcal{D}^{(i+1)} g ∈ D ( i + 1 ) by
f f ( i ) , z ( i ) ( i + 1 ) ( g ) : = ( z ( i ) ) ⊺ ⋅ u ( i ) ( g ) = ( z ( i ) ) ⊺ ⋅ M g ( i ) ⋅ f ( i ) ∣ C g ( i ) (2) f_{f^{(i)},z^{(i)}}^{(i+1)}(g) := \left(\mathbf{z}^{(i)}\right)^{\intercal} \cdot \mathbf{u}^{(i)}(g) = \left(\mathbf{z}^{(i)}\right)^{\intercal} \cdot M_g^{(i)} \cdot f^{(i)}|_{C_g^{(i)}} \tag{2} f f ( i ) , z ( i ) ( i + 1 ) ( g ) := ( z ( i ) ) ⊺ ⋅ u ( i ) ( g ) = ( z ( i ) ) ⊺ ⋅ M g ( i ) ⋅ f ( i ) ∣ C g ( i ) ( 2 ) is a valid codeword of V ( i + 1 ) : = RS [ F , D ( i + 1 ) , k ( i + 1 ) ] V^{(i+1)} := \text{RS}[\mathbb{F}, \mathcal{D}^{(i+1)}, k^{(i+1)}] V ( i + 1 ) := RS [ F , D ( i + 1 ) , k ( i + 1 ) ] where k ( i + 1 ) : = k ( i ) + 1 l ( i ) − 1 k^{(i+1)} := \frac{k^{(i)}+1}{l^{(i)}} - 1 k ( i + 1 ) := l ( i ) k ( i ) + 1 − 1 .
根据 [BBHR18] 以及上面的记号,在 FRI 协议的 COMMIT 阶段,固定一个 g ∈ D ( i + 1 ) g \in \mathcal{D}^{(i+1)} g ∈ D ( i + 1 ) ,下一步构造的 f f ( i ) , z ( i ) ( i + 1 ) ( g ) : = P u ( i ) ( g ) ( i ) ( z ( i ) ) f_{f^{(i)},z^{(i)}}^{(i+1)}(g) := P_{\mathbf{u}^{(i)}(g)}^{(i)}(z^{(i)}) f f ( i ) , z ( i ) ( i + 1 ) ( g ) := P u ( i ) ( g ) ( i ) ( z ( i ) ) ,下面理解下上述构造的式子。
f f ( i ) , z ( i ) ( i + 1 ) ( g ) = P u ( i ) ( g ) ( i ) ( z ( i ) ) = ∑ j < l ( i ) u j ( i ) ( g ) ⋅ ( z ( i ) ) j = ( z ( i ) ) 0 ⋅ u 0 ( i ) ( g ) + ( z ( i ) ) 1 ⋅ u 1 ( i ) ( g ) + ⋯ + ( z ( i ) ) l ( i ) − 1 ⋅ u l ( i ) − 1 ( i ) ( g ) = [ ( z ( i ) ) 0 ( z ( i ) ) 1 ⋯ ( z ( i ) ) l ( i ) − 1 ] ⋅ [ u 0 ( i ) ( g ) u 1 ( i ) ( g ) ⋮ u l ( i ) − 1 ( i ) ( g ) ] = ( z ( i ) ) ⊺ ⋅ u ( i ) ( g ) \begin{aligned}
f_{f^{(i)},z^{(i)}}^{(i+1)}(g) & = P_{\mathbf{u}^{(i)}(g)}^{(i)}(z^{(i)}) \\
& = \sum_{j<l^{(i)}} u_j^{(i)}(g) \cdot (z^{(i)})^j \\
& = \left(z^{(i)}\right)^0 \cdot u_0^{(i)}(g) + \left(z^{(i)}\right)^1 \cdot u_1^{(i)}(g) + \cdots + \left(z^{(i)}\right)^{l^{(i)}-1} \cdot u_{l^{(i)}-1}^{(i)}(g) \\
& = \begin{bmatrix}
\left(z^{(i)}\right)^0 & \left(z^{(i)}\right)^1 & \cdots & \left(z^{(i)}\right)^{l^{(i)}-1}
\end{bmatrix} \cdot
\begin{bmatrix}
u_0^{(i)}(g)\\
u_1^{(i)}(g)\\
\vdots\\
u_{l^{(i)}-1}^{(i)}(g)
\end{bmatrix} \\
& = \left(\mathbf{z}^{(i)}\right)^{\intercal} \cdot \mathbf{u}^{(i)}(g)
\end{aligned} f f ( i ) , z ( i ) ( i + 1 ) ( g ) = P u ( i ) ( g ) ( i ) ( z ( i ) ) = j < l ( i ) ∑ u j ( i ) ( g ) ⋅ ( z ( i ) ) j = ( z ( i ) ) 0 ⋅ u 0 ( i ) ( g ) + ( z ( i ) ) 1 ⋅ u 1 ( i ) ( g ) + ⋯ + ( z ( i ) ) l ( i ) − 1 ⋅ u l ( i ) − 1 ( i ) ( g ) = [ ( z ( i ) ) 0 ( z ( i ) ) 1 ⋯ ( z ( i ) ) l ( i ) − 1 ] ⋅ ⎣ ⎡ u 0 ( i ) ( g ) u 1 ( i ) ( g ) ⋮ u l ( i ) − 1 ( i ) ( g ) ⎦ ⎤ = ( z ( i ) ) ⊺ ⋅ u ( i ) ( g ) 下面说明下命题 1 给的第二个等式,即 u ( i ) ( g ) = M g ( i ) ⋅ f ( i ) ∣ C g ( i ) \mathbf{u}^{(i)}(g) = M_g^{(i)} \cdot f^{(i)}|_{C_g^{(i)}} u ( i ) ( g ) = M g ( i ) ⋅ f ( i ) ∣ C g ( i ) 。根据前面的分析,对于由 C g ( i ) C_g^{(i)} C g ( i ) 生成的 Vandermonde 矩阵有
V C g ( i ) ⋅ [ u 0 ( i ) u 1 ( i ) ⋮ u l ( i ) − 1 ( i ) ] = [ P u ( g 1 ′ ) P u ( g 2 ′ ) ⋮ P u ( g l ( i ) ′ ) ] = [ f ( i ) ∣ C g ( i ) ( g 1 ′ ) f ( i ) ∣ C g ( i ) ( g 2 ′ ) ⋮ f ( i ) ∣ C g ( i ) ( g l ( i ) ′ ) ] V_{C_g^{(i)}} \cdot
\begin{bmatrix}
u_0^{(i)}\\
u_1^{(i)}\\
\vdots\\
u_{l^{(i)}-1}^{(i)}
\end{bmatrix}
= \begin{bmatrix}
P_{\mathbf{u}}(g'_1)\\
P_{\mathbf{u}}(g'_2)\\
\vdots \\
P_{\mathbf{u}}(g'_{l^{(i)}})
\end{bmatrix}
= \begin{bmatrix}
f^{(i)}|_{C_g^{(i)}}(g'_1)\\
f^{(i)}|_{C_g^{(i)}}(g'_2)\\
\vdots \\
f^{(i)}|_{C_g^{(i)}}(g'_{l^{(i)}})
\end{bmatrix} V C g ( i ) ⋅ ⎣ ⎡ u 0 ( i ) u 1 ( i ) ⋮ u l ( i ) − 1 ( i ) ⎦ ⎤ = ⎣ ⎡ P u ( g 1 ′ ) P u ( g 2 ′ ) ⋮ P u ( g l ( i ) ′ ) ⎦ ⎤ = ⎣ ⎡ f ( i ) ∣ C g ( i ) ( g 1 ′ ) f ( i ) ∣ C g ( i ) ( g 2 ′ ) ⋮ f ( i ) ∣ C g ( i ) ( g l ( i ) ′ ) ⎦ ⎤ 因此
[ u 0 ( i ) u 1 ( i ) ⋮ u l ( i ) − 1 ( i ) ] = ( V C g ( i ) ) − 1 ⋅ [ f ( i ) ∣ C g ( i ) ( g 1 ′ ) f ( i ) ∣ C g ( i ) ( g 2 ′ ) ⋮ f ( i ) ∣ C g ( i ) ( g l ( i ) ′ ) ] = M g ( i ) ⋅ f ( i ) ∣ C g ( i ) \begin{bmatrix}
u_0^{(i)}\\
u_1^{(i)}\\
\vdots\\
u_{l^{(i)}-1}^{(i)}
\end{bmatrix}
=
\left(V_{C_g^{(i)}}\right)^{-1} \cdot
\begin{bmatrix}
f^{(i)}|_{C_g^{(i)}}(g'_1)\\
f^{(i)}|_{C_g^{(i)}}(g'_2)\\
\vdots \\
f^{(i)}|_{C_g^{(i)}}(g'_{l^{(i)}})
\end{bmatrix}
= M_g^{(i)} \cdot f^{(i)}|_{C_g^{(i)}} ⎣ ⎡ u 0 ( i ) u 1 ( i ) ⋮ u l ( i ) − 1 ( i ) ⎦ ⎤ = ( V C g ( i ) ) − 1 ⋅ ⎣ ⎡ f ( i ) ∣ C g ( i ) ( g 1 ′ ) f ( i ) ∣ C g ( i ) ( g 2 ′ ) ⋮ f ( i ) ∣ C g ( i ) ( g l ( i ) ′ ) ⎦ ⎤ = M g ( i ) ⋅ f ( i ) ∣ C g ( i ) 由此得到了 ( u ( i ) ( g ) ) ⊺ = M g ( i ) ⋅ f ( i ) ∣ C g ( i ) \left(\mathbf{u}^{(i)}(g)\right)^{\intercal} = M_g^{(i)} \cdot f^{(i)}|_{C_g^{(i)}} ( u ( i ) ( g ) ) ⊺ = M g ( i ) ⋅ f ( i ) ∣ C g ( i ) 。
Batching ¶ 在某些情况下,第一个 prover 的 oracle f ( 0 ) f^{(0)} f ( 0 ) 是从一个仿射空间 F ⊂ F D ( 0 ) F \subset \mathbb{F}^{\mathcal{D}^{(0)}} F ⊂ F D ( 0 ) 的函数中采样的,这个仿射空间作为我们的输入,
F = { f 0 ( 0 ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ∣ x i ∈ F , f i : D ( 0 ) → F } (3) F = \left\{ f_0^{(0)} + \sum_{i=1}^{t} x_i \cdot f_i^{(0)} \mid x_i \in \mathbb{F}, f_i : \mathcal{D}^{(0)} \to \mathbb{F} \right\} \tag{3} F = { f 0 ( 0 ) + i = 1 ∑ t x i ⋅ f i ( 0 ) ∣ x i ∈ F , f i : D ( 0 ) → F } ( 3 ) 当使用 FRI 协议来 “batch” 多个不同的 low degree testing 问题实例时,我们就通过随机线性组合将它们全部组合在一起,即上式中的 f 0 ( 0 ) + x 1 f 1 ( 0 ) + ⋯ + x t f t ( 0 ) f_0^{(0)} + x_1 f_1^{(0)} + \cdots +x_t f_t^{(0)} f 0 ( 0 ) + x 1 f 1 ( 0 ) + ⋯ + x t f t ( 0 ) 。在这种 batching 设置中,我们假设 prover 已经承诺了 f 1 ( 0 ) , … , f t ( 0 ) f_1^{(0)}, \ldots, f_t^{(0)} f 1 ( 0 ) , … , f t ( 0 ) (注意在这种情况下我们设 f 0 ( 0 ) = 0 f_0^{(0)} = 0 f 0 ( 0 ) = 0 ),并且 batched FRI 的 verifier 从 F \mathbb{F} F 中均匀随机地采样 x 1 , … , x t ∈ F x_1, \ldots, x_t \in \mathbb{F} x 1 , … , x t ∈ F , prover 答复 f ( 0 ) f^{(0)} f ( 0 ) ,其应该等于 f 0 ( 0 ) + ∑ i = 1 t x i ⋅ f i ( 0 ) f_0^{(0)} + \sum_{i=1}^{t} x_i \cdot f_i^{(0)} f 0 ( 0 ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ,现在 FRI 协议就应用于 f ( 0 ) f^{(0)} f ( 0 ) 了。相应地,batched FRI 的 QUERY 阶段也被扩展了,因此每次请求 f ( 0 ) ( g ) f^{(0)}(g) f ( 0 ) ( g ) 的查询时,验证者同时也查询了 f 0 ( 0 ) ( g ) , … , f t ( 0 ) ( g ) f_0^{(0)}(g), \ldots, f^{(0)}_t(g) f 0 ( 0 ) ( g ) , … , f t ( 0 ) ( g ) 并验证 f ( 0 ) ( g ) = f 0 ( 0 ) ( g ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ( g ) f^{(0)}(g) = f_0^{(0)}(g) + \sum_{i=1}^{t} {\color{orange}x_i} \cdot f^{(0)}_i(g) f ( 0 ) ( g ) = f 0 ( 0 ) ( g ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ( g ) 。
🐞 Fix
The (batched) FRI QUERY phase ¶ 命题 1 表明对于诚实的 prover ,verifier 选取任意的值 z ( i ) z^{(i)} z ( i ) ,对于每一个 y ∈ D ( i + 1 ) y \in D^{(i+1)} y ∈ D ( i + 1 ) ,prover 都可以通过计算 ( 2 ) (2) ( 2 ) 式,从一个码字 f ( i ) ∈ V ( i ) f^{(i)} \in V^{(i)} f ( i ) ∈ V ( i ) 构建一个新的码字 f ( i + 1 ) ∈ V ( i + 1 ) f^{(i+1)} \in V^{(i+1)} f ( i + 1 ) ∈ V ( i + 1 ) 。因此,我们将始终假设 f ( r ) ∈ V ( r ) f^{(r)} \in V^{(r)} f ( r ) ∈ V ( r ) ,例如,通过假设验证者总是查询 f ( r ) f^{(r)} f ( r ) 的前 k ( r ) k^{(r)} k ( r ) 个元素(按照某种规范顺序)并将 f ( r ) f^{(r)} f ( r ) 与该函数的插值多项式进行比较。
命题 1 给出了一种非常自然的测试方法,用来检查 f ( i ) f^{(i)} f ( i ) 和 f ( i + 1 ) f^{(i+1)} f ( i + 1 ) 之间的一致性,并且 FRI 的查询阶段通过从 “顶部”(f ( r ) f^{(r)} f ( r ) )到 “底部”(f ( 0 ) f^{(0)} f ( 0 ) )迭代应用这种自然测试来遵循这一过程。
🤔 Question
A single invocation of the FRI QUERY phase ¶ 从 D ( r ) \mathcal{D}^{(r)} D ( r ) 中均匀随机地选取 g ( r ) g^{(r)} g ( r ) 。对于 i = r , ⋯ , 1 i = r, \cdots, 1 i = r , ⋯ , 1 ,从陪集 C g ( i ) ( i − 1 ) C_{g^{(i)}}^{(i-1)} C g ( i ) ( i − 1 ) 中均匀随机地选取 g ( i − 1 ) g^{(i-1)} g ( i − 1 ) 。 如果 f ( 0 ) ( g ( 0 ) ) ≠ f 0 ( 0 ) ( g ( 0 ) ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ( g ( 0 ) ) f^{(0)}(g^{(0)}) \neq f_0^{(0)}(g^{(0)}) + \sum_{i = 1}^{t}x_i \cdot f_i^{(0)}(g^{(0)}) f ( 0 ) ( g ( 0 ) ) = f 0 ( 0 ) ( g ( 0 ) ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ( g ( 0 ) ) ,则拒绝。 如果,对于任意地 i ∈ { 0 , ⋯ , r − 1 } i \in \{0, \cdots, r - 1\} i ∈ { 0 , ⋯ , r − 1 } ,有 f ( i + 1 ) ( g ( i + 1 ) ) ≠ ( z ( i ) ) ⊺ ⋅ M g ( i ) ⋅ f ( i ) ∣ C g ( i ) f^{(i+1)}(g^{(i+1)}) \neq \left(\mathbf{z}^{(i)}\right)^{\intercal} \cdot M_g^{(i)} \cdot f^{(i)}|_{C_g^{(i)}} f ( i + 1 ) ( g ( i + 1 ) ) = ( z ( i ) ) ⊺ ⋅ M g ( i ) ⋅ f ( i ) ∣ C g ( i ) ,则拒绝。 否则 —— 如果上述条件中的所有等式都成立,则接受。 上述 QUERY 过程与 [BBHR18] 中 FRI 的 QUERY 过程有所不同,这里选取随机数是从最后一个 D ( r ) \mathcal{D}^{(r)} D ( r ) 中开始选取的,而不是从初始的 D ( 0 ) \mathcal{D}^{(0)} D ( 0 ) 中选取的。相比[BBHR18] 中的 QUERY 阶段,这里我们还想要验证在第 0 步时,batch 的是否正确,也就是 f ( 0 ) ( g ( 0 ) ) ≠ f 0 ( 0 ) ( g ( 0 ) ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ( g ( 0 ) ) f^{(0)}(g^{(0)}) \neq f_0^{(0)}(g^{(0)}) + \sum_{i = 1}^{t}x_i \cdot f_i^{(0)}(g^{(0)}) f ( 0 ) ( g ( 0 ) ) = f 0 ( 0 ) ( g ( 0 ) ) + ∑ i = 1 t x i ⋅ f i ( 0 ) ( g ( 0 ) ) 。
Summary of the batched FRI protocol ¶ 下面总结下目前提到的比较重要的性质,将会在下面的 soundness 分析中用到。
在协议的 COMMIT 阶段结束时,verifier 可以通过 oracle 访问一系列函数 f ( 0 ) : D ( 0 ) → F , … , f ( r ) : D ( r ) → F f^{(0)}: \mathcal{D}^{(0)} \rightarrow \mathbb{F}, \ldots, f^{(r)}: \mathcal{D}^{(r)} \rightarrow \mathbb{F} f ( 0 ) : D ( 0 ) → F , … , f ( r ) : D ( r ) → F ,其中 D ( 0 ) ⊋ … ⊋ D ( r ) \mathcal{D}^{(0)} \supsetneq \ldots \supsetneq \mathcal{D}^{(r)} D ( 0 ) ⊋ … ⊋ D ( r ) 是一系列 2-smooth 群,并且 f ( i ) f^{(i)} f ( i ) 任意依赖于 z ( 0 ) , … , z ( i ) z^{(0)}, \ldots, z^{(i)} z ( 0 ) , … , z ( i ) (以及 f ( 0 ) , … , f ( i − 1 ) f^{(0)}, \ldots, f^{(i-1)} f ( 0 ) , … , f ( i − 1 ) )。我们假设 f ( r ) ∈ V ( r ) f^{(r)} \in V^{(r)} f ( r ) ∈ V ( r ) 。 存在一组 l ( i ) × l ( i ) l^{(i)} \times l^{(i)} l ( i ) × l ( i ) 的可逆矩阵 { M g ( i + 1 ) ( i ) : g ( i + 1 ) ∈ D ( i + 1 ) } \{M_{g^{(i+1)}}^{(i)} : g^{(i+1)} \in D^{(i+1)}\} { M g ( i + 1 ) ( i ) : g ( i + 1 ) ∈ D ( i + 1 ) } ,因此将 M g ( i + 1 ) ( i ) M_{g^{(i+1)}}^{(i)} M g ( i + 1 ) ( i ) 应用于 f ( i ) ∣ C g ( i + 1 ) ( i ) f^{(i)}|_{C_{g(i+1)}^{(i)}} f ( i ) ∣ C g ( i + 1 ) ( i ) 可以将 f ( i ) f^{(i)} f ( i ) 映射到一个向量序列 u = u ( i ) = { u 0 ( i ) , … , u l ( i ) ( i ) } ⊂ F D ( i + 1 ) \mathbf{u} = \mathbf{u}^{(i)} = \{u_0^{(i)}, \ldots, u_{l(i)}^{(i)}\} \subset \mathbb{F}^{D^{(i+1)}} u = u ( i ) = { u 0 ( i ) , … , u l ( i ) ( i ) } ⊂ F D ( i + 1 ) ,其中 u ( i ) ( g ( i + 1 ) ) = ( u 0 ( i ) ( g ( i + 1 ) ) , ⋯ , u l ( i ) − 1 ( i ) ( g ( i + 1 ) ) ) = M g ( i + 1 ) ( i ) ⋅ f ( i ) ∣ C g ( i + 1 ) ( i ) . (4) \mathbf{u}^{(i)}\left(g^{(i+1)}\right) = \left(u_0^{(i)}\left(g^{(i+1)}\right), \cdots, u_{l^{(i)}-1}^{(i)}\left(g^{(i+1)}\right) \right) = M_{g^{(i+1)}}^{(i)} \cdot f^{(i)}|_{C_{g(i+1)}^{(i)}}. \tag{4} u ( i ) ( g ( i + 1 ) ) = ( u 0 ( i ) ( g ( i + 1 ) ) , ⋯ , u l ( i ) − 1 ( i ) ( g ( i + 1 ) ) ) = M g ( i + 1 ) ( i ) ⋅ f ( i ) ∣ C g ( i + 1 ) ( i ) . ( 4 ) 此外,如果 f ( i ) f^{(i)} f ( i ) 是在 D ( i ) D^{(i)} D ( i ) 上码率为 ρ 的有效 RS 码字,那么通过 u ( i ) \mathbf{u}^{(i)} u ( i ) 的参数化曲线上的每个向量也是在 D ( i + 1 ) D^{(i+1)} D ( i + 1 ) 上码率为 ρ 的有效 RS 码字。
在 QUERY 阶段的每次迭代会检查 f ( i + 1 ) f^{(i+1)} f ( i + 1 ) 是否是通过方程 ( 2 ) (2) ( 2 ) 从 f ( i ) f^{(i)} f ( i ) 构造的,并且(在 batched 的情况下)检查 f ( 0 ) f^{(0)} f ( 0 ) 是否是通过方程 ( 3 ) (3) ( 3 ) 正确计算的。 Soundness ¶ Lemma 8.2 [BSCIK20, Lemma 8.2] (batched FRI error bound). Let V ( 0 ) = RS [ F , D ( 0 ) , k ( 0 ) ] V^{(0)} = \text{RS}[\mathbb{F}, \mathcal{D}^{(0)}, k^{(0)}] V ( 0 ) = RS [ F , D ( 0 ) , k ( 0 ) ] where D ( 0 ) \mathcal{D}^{(0)} D ( 0 ) is a coset of a 2-smooth multiplicative group, and k ( 0 ) + 1 k^{(0)} + 1 k ( 0 ) + 1 is a power of 2; set ρ = ( k ( 0 ) + 1 ) / ∣ D ( 0 ) ∣ \rho = (k^{(0)} + 1)/|\mathcal{D}^{(0)}| ρ = ( k ( 0 ) + 1 ) /∣ D ( 0 ) ∣ .
Let F ⊆ F D ( 0 ) F \subseteq \mathbb{F}^{\mathcal{D}^{(0)}} F ⊆ F D ( 0 ) be a space of functions as defined in Eq. ( 3 ) (3) ( 3 ) whose correlated agreement density with V ( 0 ) V^{(0)} V ( 0 ) is α. For interger m ≥ 3 m \ge 3 m ≥ 3 , let
α ( 0 ) ( ρ , m ) = max { α , ρ ( 1 + 1 / 2 m ) } . \alpha^{(0)}(\rho, m) = \max\left\{ \alpha, \sqrt{\rho}(1 + 1/2m) \right\}. α ( 0 ) ( ρ , m ) = max { α , ρ ( 1 + 1/2 m ) } . Assume the FRI protocol is used with r r r rounds, and let l ( i ) = ∣ D ( i ) ∣ / ∣ D ( i + 1 ) ∣ l^{(i)} = |\mathcal{D}^{(i)}|/|\mathcal{D}^{(i+1)}| l ( i ) = ∣ D ( i ) ∣/∣ D ( i + 1 ) ∣ denote the ratio between prover messages (oracles) i i i and i + 1 i + 1 i + 1 . Let ϵ Q \epsilon_Q ϵ Q denote the probability that the verifier accepts a single FRI QUERY invocation. Then,
Pr x 1 , … , x t , z ( 0 ) , … , z ( r − 1 ) [ ϵ Q > α ( 0 ) ( ρ , m ) ] ≤ ϵ C , (8.5) \Pr_{x_1, \ldots, x_t, z^{(0)}, \ldots, z^{(r-1)}}\left[ \epsilon_Q > \alpha^{(0)}(\rho, m) \right] \le \epsilon_{\text{C}}, \tag{8.5} x 1 , … , x t , z ( 0 ) , … , z ( r − 1 ) Pr [ ϵ Q > α ( 0 ) ( ρ , m ) ] ≤ ϵ C , ( 8.5 ) where
ϵ C = ( m + 1 2 ) 7 ⋅ ∣ D ( 0 ) ∣ 2 2 ρ 3 / 2 ∣ F ∣ + ( 2 m + 1 ) ⋅ ( ∣ D ( 0 ) ∣ + 1 ) ρ ⋅ ∑ i = 0 r − 1 l ( i ) ∣ F ∣ . \epsilon_{\text{C}} = \frac{\left(m + \frac{1}{2}\right)^7 \cdot \vert \mathcal{D}^{(0)}\vert^2}{2 \rho^{3/2} \vert \mathbb{F} \vert} + \frac{(2m+1) \cdot (\vert \mathcal{D}^{(0)}\vert + 1)}{\sqrt{\rho}} \cdot \frac{\sum_{i = 0}^{r - 1} l^{(i)}}{\vert \mathbb{F} \vert}. ϵ C = 2 ρ 3/2 ∣ F ∣ ( m + 2 1 ) 7 ⋅ ∣ D ( 0 ) ∣ 2 + ρ ( 2 m + 1 ) ⋅ ( ∣ D ( 0 ) ∣ + 1 ) ⋅ ∣ F ∣ ∑ i = 0 r − 1 l ( i ) . In words: For any interactive FRI prover P ∗ P^* P ∗ , the probability that the oracles f ( 0 ) , … , f ( r ) f^{(0)}, \ldots, f^{(r)} f ( 0 ) , … , f ( r ) sent by P ∗ P^* P ∗ will pass a single invocation of the batched FRI QUERY test with probability greater than α ( 0 ) ( ρ , m ) \alpha^{(0)}(\rho, m) α ( 0 ) ( ρ , m ) , is smaller than ϵ C \epsilon_{\text{C}} ϵ C . The probability is over the random variables x 1 , … , x t x_1, \ldots, x_t x 1 , … , x t used to sample f ( 0 ) f^{(0)} f ( 0 ) from F F F and over the random messages z ( 0 ) , … , z ( r − 1 ) z^{(0)}, \ldots, z^{(r-1)} z ( 0 ) , … , z ( r − 1 ) sent by the verifier during the COMMIT phase.
Theorem 8.3 [BSCIK20, Theorem 8.3] (Batched FRI Soundness). Let f 0 ( 0 ) , … , f t ( r ) : D ( 0 ) → F f_0^{(0)}, \ldots, f_t^{(r)}: \mathcal{D}^{(0)} \rightarrow \mathbb{F} f 0 ( 0 ) , … , f t ( r ) : D ( 0 ) → F be a sequence of functions and let V ( 0 ) = RS [ F , D ( 0 ) , k ( 0 ) ] V^{(0)} = \text{RS}[\mathbb{F}, \mathcal{D}^{(0)}, k^{(0)}] V ( 0 ) = RS [ F , D ( 0 ) , k ( 0 ) ] where D ( 0 ) \mathcal{D}^{(0)} D ( 0 ) is a coset of a 2-smooth group of size n ( 0 ) = ∣ D ( 0 ) ∣ n^{(0)} = |\mathcal{D}^{(0)}| n ( 0 ) = ∣ D ( 0 ) ∣ , and ρ = k ( 0 ) + 1 n ( 0 ) \rho = \frac{k^{(0)} + 1}{n^{(0)}} ρ = n ( 0 ) k ( 0 ) + 1 satisfies ρ = 2 − R \rho = 2^{-\text{R}} ρ = 2 − R for positive integer R \text{R} R . Let α = ρ ( 1 + 1 / 2 m ) \alpha = \sqrt{\rho}(1 + 1/2m) α = ρ ( 1 + 1/2 m ) for integer m ≥ 3 m \ge 3 m ≥ 3 and ϵ C \epsilon_{\text{C}} ϵ C be as defined in Lemma 8.2.
Assume the FRI protocol is used with r r r rounds. Let l ( i ) = ∣ D ( i ) ∣ / ∣ D ( i + 1 ) ∣ l^{(i)} = |\mathcal{D}^{(i)}|/|\mathcal{D}^{(i+1)}| l ( i ) = ∣ D ( i ) ∣/∣ D ( i + 1 ) ∣ denote the ratio between prover messages (oracles) i i i and i + 1 i + 1 i + 1 . Assume furthermore that s s s is the number of invocations of the FRI QUERY step.
Suppose there exists a batched FRI prover P ∗ P^* P ∗ that interacts with the batched FRI verifier and causes it to output “accept” with probability greater than
ϵ FRI : = ϵ C + α s = ( m + 1 2 ) 7 ⋅ ∣ D ( 0 ) ∣ 2 2 ρ 3 / 2 ∣ F ∣ + ( 2 m + 1 ) ⋅ ( ∣ D ( 0 ) ∣ + 1 ) ρ ⋅ ∑ i = 0 r − 1 l ( i ) ∣ F ∣ + ( ρ ⋅ ( 1 + 1 2 m ) ) s . \epsilon_{\text{FRI}} := \epsilon_{\text{C}} + \alpha^s = \frac{\left(m + \frac{1}{2}\right)^7 \cdot \vert \mathcal{D}^{(0)}\vert^2}{2 \rho^{3/2} \vert \mathbb{F} \vert} + \frac{(2m+1) \cdot (\vert \mathcal{D}^{(0)}\vert + 1)}{\sqrt{\rho}} \cdot \frac{\sum_{i = 0}^{r - 1} l^{(i)}}{\vert \mathbb{F} \vert} + \left(\sqrt{\rho} \cdot \left( 1 + \frac{1}{2m} \right) \right)^s . ϵ FRI := ϵ C + α s = 2 ρ 3/2 ∣ F ∣ ( m + 2 1 ) 7 ⋅ ∣ D ( 0 ) ∣ 2 + ρ ( 2 m + 1 ) ⋅ ( ∣ D ( 0 ) ∣ + 1 ) ⋅ ∣ F ∣ ∑ i = 0 r − 1 l ( i ) + ( ρ ⋅ ( 1 + 2 m 1 ) ) s . Then f 0 ( 0 ) , … , f t ( 0 ) f_0^{(0)}, \ldots, f_t^{(0)} f 0 ( 0 ) , … , f t ( 0 ) have correlated agreement with V ( 0 ) V^{(0)} V ( 0 ) on a domain D ′ ⊂ D ( 0 ) \mathcal{D}' \subset \mathcal{D}^{(0)} D ′ ⊂ D ( 0 ) of density at least α.
定理 8.3 证明 :反证法,然后直接通过引理 8.2 来证明。假设 f 0 ( 0 ) , … , f t ( 0 ) f_0^{(0)}, \ldots, f_t^{(0)} f 0 ( 0 ) , … , f t ( 0 ) 与 V ( 0 ) V^{(0)} V ( 0 ) 的最大 correlated agreement 小于 α ( 0 ) ( ρ , m ) = ρ ( 1 + 1 / 2 m ) \alpha^{(0)}(\rho, m) = \sqrt{\rho}(1 + 1/2m) α ( 0 ) ( ρ , m ) = ρ ( 1 + 1/2 m ) ,但是同时接受的概率大于 ϵ C + ( α ( 0 ) ( ρ , m ) ) s \epsilon_{\text{C}} + (\alpha^{(0)}(\rho, m))^s ϵ C + ( α ( 0 ) ( ρ , m ) ) s 。
设 E E E 为在每次 FRI QUERY 阶段接受的概率大于 α ( 0 ) ( ρ , m ) \alpha^{(0)}(\rho, m) α ( 0 ) ( ρ , m ) 的事件。这个事件依赖于 x 1 , … , x t , f ( 0 ) , z ( 0 ) , … , z ( r − 1 ) , f ( r ) x_1, \ldots, x_t, f^{(0)}, z^{(0)}, \ldots, z^{(r-1)}, f^{(r)} x 1 , … , x t , f ( 0 ) , z ( 0 ) , … , z ( r − 1 ) , f ( r ) ,其中每个 f ( i ) f^{(i)} f ( i ) 是 P ∗ P^* P ∗ 根据之前 Verifier 的消息生成的。通过引理 8.2,对于任意的 Prover P ∗ P^* P ∗ ,有事件 E E E 发生的概率不超过 ϵ C \epsilon_{\text{C}} ϵ C 。当事件 E E E 不成立时,那么 s s s 次独立调用 FRI QUERY 都返回 “accept” 的概率不超过 ( α ( 0 ) ( ρ , m ) ) s (\alpha^{(0)}(\rho, m))^s ( α ( 0 ) ( ρ , m ) ) s 。
因此,FRI 的 Verifier 接受的概率不超过 ϵ C + ( α ( 0 ) ( ρ , m ) ) s \epsilon_{\text{C}} + (\alpha^{(0)}(\rho, m))^s ϵ C + ( α ( 0 ) ( ρ , m ) ) s ,这与假设矛盾。\Box
❓ Question
Proof of Lemma 8.2 ¶ 在证明 Lemma 8.2 之前,先介绍一种跟踪 verifier 检查 consistency 是否通过的方法。具体来说,Prover 会根据 Verifier 发送的随机数 z ( i ) z^{(i)} z ( i ) 来构造函数 f ( i + 1 ) f^{(i+1)} f ( i + 1 ) ,然后向 Verifier 回应函数 f ( i + 1 ) f^{(i+1)} f ( i + 1 ) 。在 FRI 的 QUERY 阶段, Verifier 会检查函数 f ( i + 1 ) f^{(i+1)} f ( i + 1 ) 与函数 f ( i ) f^{(i)} f ( i ) 的 consistency 。
定义一系列的加权(weight)函数,μ ( i ) : D ( i ) → [ 0 , 1 ] \mu^{(i)}:\mathcal{D}^{(i)} \rightarrow [0,1] μ ( i ) : D ( i ) → [ 0 , 1 ] 以及 ν ( i ) : D ( i ) → [ 0 , 1 ] \nu^{(i)}:\mathcal{D}^{(i)} \rightarrow [0,1] ν ( i ) : D ( i ) → [ 0 , 1 ] ,其中 i = 0 , … , r i = 0, \ldots, r i = 0 , … , r 。这些加权函数是通过归纳法来定义的。当 i = 0 i = 0 i = 0 时,用 { 0 , 1 } \{0,1\} { 0 , 1 } weights 来指示 f ( 0 ) ( g ) f^{(0)}(g) f ( 0 ) ( g ) 是否计算正确:
μ ( 0 ) ( g ) = { 1 f ( 0 ) ( g ) = f 0 ( 0 ) ( g ) + ∑ i = 1 t x i f i ( 0 ) ( g ) 0 otherwise \mu^{(0)}(g) =
\begin{cases}
1 & f^{(0)}(g) = f_0^{(0)}(g) + \sum_{i = 1}^t x_i f_i^{(0)}(g) \\
0 & \text{otherwise}
\end{cases} μ ( 0 ) ( g ) = { 1 0 f ( 0 ) ( g ) = f 0 ( 0 ) ( g ) + ∑ i = 1 t x i f i ( 0 ) ( g ) otherwise 现在,可以通过归纳法得到的 μ ( i ) \mu^{(i)} μ ( i ) 可以来定义一个辅助 weight 函数 ν ( i + 1 ) : D ( i + 1 ) → [ 0 , 1 ] \nu^{(i+1)}: \mathcal{D}^{(i+1)} \rightarrow [0,1] ν ( i + 1 ) : D ( i + 1 ) → [ 0 , 1 ] 。在 D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 中取一个元素 g g g ,就可以得到 D ( i ) \mathcal{D}^{(i)} D ( i ) 中的陪集 C g ( i ) ⊂ D ( i ) C_g^{(i)} \subset \mathcal{D}^{(i)} C g ( i ) ⊂ D ( i ) ,这个集合是由那些在 D ( i ) \mathcal{D}^{(i)} D ( i ) 中能过通过映射 q ( i ) ( x ) = x l ( i ) q^{(i)}(x) = x^{l^{(i)}} q ( i ) ( x ) = x l ( i ) 得到 g g g 的所有元素组成的,即如 ( 8.1 ) (8.1) ( 8.1 ) 所示,
C g ( i ) : = { g ′ ∈ D ( i ) ∣ ( g ′ ) l ( i ) = g } . C_g^{(i)} := \{g' \in \mathcal{D}^{(i)} \mid (g')^{l^{(i)}} = g\}. C g ( i ) := { g ′ ∈ D ( i ) ∣ ( g ′ ) l ( i ) = g } . 那么 ν ( i + 1 ) \nu^{(i+1)} ν ( i + 1 ) 的定义为
ν ( i + 1 ) ( g ) = E g ′ ∈ C g ( i ) [ μ ( i ) ( g ′ ) ] . (8.6) \nu^{(i+1)}(g) = \mathbb{E}_{g' \in C_g^{(i)}}\left[ \mu^{(i)}(g') \right]. \tag{8.6} ν ( i + 1 ) ( g ) = E g ′ ∈ C g ( i ) [ μ ( i ) ( g ′ ) ] . ( 8.6 ) 换句话说,ν ( i + 1 ) ( g ) \nu^{(i+1)}(g) ν ( i + 1 ) ( g ) 是陪集 C g ( i ) C_g^{(i)} C g ( i ) 中的所有元素的 μ ( i ) \mu^{(i)} μ ( i ) weight 的期望值。最后,来定义函数 μ ( i + 1 ) \mu^{(i+1)} μ ( i + 1 ) ,对于每一个 g ∈ D ( i + 1 ) g \in \mathcal{D}^{(i+1)} g ∈ D ( i + 1 ) :
μ ( i + 1 ) ( g ) = { ν ( i + 1 ) ( g ) f ( i + 1 ) ( g ) = f f ( i ) , z ( i ) ( i + 1 ) ( g ) 0 otherwise \mu^{(i+1)}(g) =
\begin{cases}
\nu^{(i+1)}(g) & f^{(i+1)}(g) = f_{f^{(i)}, z^{(i)}}^{(i+1)}(g) \\
0 & \text{otherwise}
\end{cases} μ ( i + 1 ) ( g ) = { ν ( i + 1 ) ( g ) 0 f ( i + 1 ) ( g ) = f f ( i ) , z ( i ) ( i + 1 ) ( g ) otherwise 关于 μ ( i ) \mu^{(i)} μ ( i ) 的定义,一个很重要的性质就是,μ ( i ) ( g ) \mu^{(i)}(g) μ ( i ) ( g ) 是在 g g g 从 f ( i ) f^{(i)} f ( i ) 中 query 的条件下,FRI QUERY 阶段成功的概率的一个度量,这也是下面的命题成立的一个重要原因。
Claim 8.5. The probability ϵ Q \epsilon_{\text{Q}} ϵ Q that a single invocation of the batched FRI QUERY accepts f ( 0 ) , … , f ( r ) f^{(0)}, \ldots, f^{(r)} f ( 0 ) , … , f ( r ) , where f ( r ) ∈ RS [ F , D ( r ) , k ( r ) ] f^{(r)} \in \text{RS}[\mathbb{F},\mathcal{D}^{(r)},k^{(r)}] f ( r ) ∈ RS [ F , D ( r ) , k ( r ) ] , satisfies
ϵ Q = E g ( r ) ∈ D ( r ) [ μ ( r ) ( g ( r ) ) ] . \epsilon_{\text{Q}} = \mathbb{E}_{g^{(r)} \in \mathcal{D}^{(r)}}\left[ \mu^{(r)}(g^{(r)}) \right]. ϵ Q = E g ( r ) ∈ D ( r ) [ μ ( r ) ( g ( r ) ) ] . 证明 :回顾下 FRI QUERY 的调用,会选择一系列随机的 g ( r ) , … , g ( 0 ) g^{(r)}, \ldots, g^{(0)} g ( r ) , … , g ( 0 ) ,其中 g ( i − 1 ) g^{(i-1)} g ( i − 1 ) 是从陪集 C g ( i ) ( i − 1 ) C_{g^{(i)}}^{(i-1)} C g ( i ) ( i − 1 ) 中均匀随机选取的。下面通过归纳法来证明,对于 i = 0 , … , r i = 0, \ldots, r i = 0 , … , r
E g ( i ) ∈ D ( i ) [ μ ( i ) ( g ( i ) ) ] \mathbb{E}_{g^{(i)} \in \mathcal{D}^{(i)}}\left[ \mu^{(i)}(g^{(i)}) \right] E g ( i ) ∈ D ( i ) [ μ ( i ) ( g ( i ) ) ] 等于这样的概率,当均匀随机地选取 g ( i ) g^{(i)} g ( i ) ,并且其是从一个随机序列 g ( i − 1 ) ∈ C g ( i ) ( i − 1 ) , … , g ( 0 ) ∈ C g ( 1 ) ( 0 ) g^{(i-1)} \in C_{g^{(i)}}^{(i-1)}, \ldots, g^{(0)} \in C_{g^{(1)}}^{(0)} g ( i − 1 ) ∈ C g ( i ) ( i − 1 ) , … , g ( 0 ) ∈ C g ( 1 ) ( 0 ) 中生成的时,所有和 g ( i ) g^{(i)} g ( i ) 及其引发的测试都通过的概率。
归纳法证明的思路如下:
证明对于 i = 0 i = 0 i = 0 时,最基本的情况 μ ( 0 ) \mu^{(0)} μ ( 0 ) 成立 假设对于 i − 1 i - 1 i − 1 时 μ ( i − 1 ) \mu^{(i-1)} μ ( i − 1 ) 成立,证明对于 i i i 时 μ ( i ) \mu^{(i)} μ ( i ) 成立 从而就能证明该命题。
当 i = 0 i = 0 i = 0 时,由 μ ( 0 ) \mu^{(0)} μ ( 0 ) 的定义,
μ ( 0 ) ( g ( 0 ) ) = { 1 f ( 0 ) ( g ( 0 ) ) = f 0 ( 0 ) ( g ( 0 ) ) + ∑ i = 1 t x i f i ( 0 ) ( g ( 0 ) ) 0 otherwise \mu^{(0)}(g^{(0)}) =
\begin{cases}
1 & f^{(0)}(g^{(0)}) = f_0^{(0)}(g^{(0)}) + \sum_{i = 1}^t x_i f_i^{(0)}(g^{(0)}) \\
0 & \text{otherwise}
\end{cases} μ ( 0 ) ( g ( 0 ) ) = { 1 0 f ( 0 ) ( g ( 0 ) ) = f 0 ( 0 ) ( g ( 0 ) ) + ∑ i = 1 t x i f i ( 0 ) ( g ( 0 ) ) otherwise 调用 FRI QUERY 通过的概率自然等于 E g ( 0 ) ∈ D ( 0 ) [ μ ( 0 ) ( g ( 0 ) ) ] \mathbb{E}_{g^{(0)} \in \mathcal{D}^{(0)}}\left[ \mu^{(0)}(g^{(0)}) \right] E g ( 0 ) ∈ D ( 0 ) [ μ ( 0 ) ( g ( 0 ) ) ] 。
假设对于 i − 1 i - 1 i − 1 时 μ ( i − 1 ) \mu^{(i-1)} μ ( i − 1 ) 成立,现在分析 μ ( i ) ( g ( i ) ) \mu^{(i)}(g^{(i)}) μ ( i ) ( g ( i ) ) ,如果 f ( i ) ( g ( i ) ) f^{(i)}(g^{(i)}) f ( i ) ( g ( i ) ) 未按照式 ( 8.2 ) (8.2) ( 8.2 ) 正确计算,那么 μ ( i ) ( g ( i ) ) = 0 \mu^{(i)}(g^{(i)}) = 0 μ ( i ) ( g ( i ) ) = 0 ,否则的话,根据定义
μ ( i ) ( g ( i ) ) = ν ( i ) ( g ( i ) ) = E g ( i − 1 ) ∈ C g ( i ) ( i − 1 ) [ μ ( i − 1 ) ( g ( i − 1 ) ) ] . \mu^{(i)}(g^{(i)}) = \nu^{(i)}(g^{(i)}) = \mathbb{E}_{g^{(i-1)} \in C_{g^{(i)}}^{(i-1)}}\left[ \mu^{(i-1)}(g^{(i-1)}) \right]. μ ( i ) ( g ( i ) ) = ν ( i ) ( g ( i ) ) = E g ( i − 1 ) ∈ C g ( i ) ( i − 1 ) [ μ ( i − 1 ) ( g ( i − 1 ) ) ] . 这说明 μ ( i ) ( g ( i ) ) \mu^{(i)}(g^{(i)}) μ ( i ) ( g ( i ) ) 是在陪集 C g ( i ) ( i − 1 ) ⊆ D ( i − 1 ) C_{g^{(i)}}^{(i-1)} \subseteq \mathcal{D}^{(i-1)} C g ( i ) ( i − 1 ) ⊆ D ( i − 1 ) 上 μ ( i − 1 ) \mu^{(i-1)} μ ( i − 1 ) 的值的平均值,由归纳法假设得,其是和 g ( i − 1 ) , … , g ( 0 ) g^{(i-1)}, \ldots, g^{(0)} g ( i − 1 ) , … , g ( 0 ) 相关的所有测试通过的概率,因此可得对于 i i i 时 μ ( i ) \mu^{(i)} μ ( i ) 成立。\Box
Lemma 8.2 需要估计的是在 FRI QUERY 阶段的概率,回顾上面的 batched FRI QUERY 阶段的协议,有两个地方涉及到随机数:
协议的第 2 步,使用 t t t 个随机数 x 1 , … , x t x_1, \ldots , x_t x 1 , … , x t 来 batch f 1 ( 0 ) , f 2 ( 0 ) , … , f t ( 0 ) f_1^{(0)}, f_2^{(0)}, \ldots ,f_t^{(0)} f 1 ( 0 ) , f 2 ( 0 ) , … , f t ( 0 ) ,这对应 affine space 的情况,要用到定理 7.4 对应的结论。 协议的第 3 步,用 z ( i ) = ( ( z ( i ) ) 0 , ( z ( i ) ) 1 , … , ( z ( i ) ) l ( i ) − 1 ) \mathbf{z}^{(i)} = \left(\left(z^{(i)}\right)^0, \left(z^{(i)}\right)^1, \ldots, \left(z^{(i)}\right)^{l^{(i)}-1}\right) z ( i ) = ( ( z ( i ) ) 0 , ( z ( i ) ) 1 , … , ( z ( i ) ) l ( i ) − 1 ) 来进行 batch ,对应 curves 的情况,会用到定理 7.2 的结论。 Lemma 8.2 证明 :现在要证明引理 8.2 ,由命题 8.5,只需证明,在 verifier 的随机选择中,以大于概率 1 − ϵ C 1 - \epsilon_C 1 − ϵ C 有
E g ∈ D ( r ) [ μ ( r ) ( g ) ] ≤ α ( 0 ) ( ρ , m ) . (8.7) \mathbb{E}_{g \in \mathcal{D}^{(r)}}\left[ \mu^{(r)}(g) \right] \le \alpha^{(0)}(\rho, m). \tag{8.7} E g ∈ D ( r ) [ μ ( r ) ( g ) ] ≤ α ( 0 ) ( ρ , m ) . ( 8.7 ) 如果证明了上述成立,那么也就是说当在 F q \mathbb{F}_q F q 中选取随机数时,如果有 ϵ Q > α ( 0 ) ( ρ , m ) \epsilon_Q > \alpha^{(0)}(\rho, m) ϵ Q > α ( 0 ) ( ρ , m ) ,那么其概率小于等于 ϵ C \epsilon_C ϵ C ,这也就证明了引理 8.2。
🤔 Question
证明的思路是先定义一些列坏的事件 E ( 0 ) , … , E ( r ) E^{(0)}, \ldots, E^{(r)} E ( 0 ) , … , E ( r ) ,其中一些事件会发生的概率是各个事件发生的概率之和,证明这个概率小于等于 ϵ C \epsilon_C ϵ C 。接着再假设当没有坏的事件发生时,证明式子 ( 8.7 ) (8.7) ( 8.7 ) 成立。
令 E ( 0 ) E^{(0)} E ( 0 ) 为事件
agree μ ( 0 ) ( f ( 0 ) , V ( 0 ) ) > α ( 0 ) ( ρ , m ) . \text{agree}_{\mu^{(0)}} \left(f^{(0)}, V^{(0)}\right) > \alpha^{(0)}(\rho, m). agree μ ( 0 ) ( f ( 0 ) , V ( 0 ) ) > α ( 0 ) ( ρ , m ) . 由 μ ( 0 ) \mu^{(0)} μ ( 0 ) 的定义得事件 E ( 0 ) E^{(0)} E ( 0 ) 为
agree ( f 0 ( 0 ) + ∑ i = 1 t x i f i ( 0 ) , V ( 0 ) ) > α ( 0 ) ( ρ , m ) = max { α , ρ ( 1 + 1 / 2 m ) } . \text{agree} \left(f_0^{(0)} + \sum_{i=1}^{t} x_i f_i^{(0)} , V^{(0)}\right) > \alpha^{(0)}(\rho, m) = \max\left\{ \alpha, \sqrt{\rho}(1 + 1/2m) \right\}. agree ( f 0 ( 0 ) + i = 1 ∑ t x i f i ( 0 ) , V ( 0 ) ) > α ( 0 ) ( ρ , m ) = max { α , ρ ( 1 + 1/2 m ) } . 🤔 Question
因此这个事件 E ( 0 ) E^{(0)} E ( 0 ) 主要取决于随机数 x 1 , … , x t x_1, \ldots, x_t x 1 , … , x t 。通过引理中的假设,有 ( f 0 ( 0 ) , … , f t ( 0 ) ) (f_0^{(0)}, \ldots, f_t^{(0)}) ( f 0 ( 0 ) , … , f t ( 0 ) ) 与 V ( 0 ) V^{(0)} V ( 0 ) 的最大 correlated agreement density 不超过 α 。
回顾下定理 7.4:
Theorem 7.4 (Weighted correlated agreement over affine spaces – Version II). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D and let U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D U = u_0 + \text{span}\{u_1, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} U = u 0 + span { u 1 , ⋯ , u l } ⊂ F q D be an affine subspace. Let μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] be a vector of weights, whose values all have denominator M M M . Let m ≥ 3 m \ge 3 m ≥ 3 and let
> α ≥ α 0 ( ρ , m ) : = ρ + ρ 2 m . > > \alpha \ge \alpha_0(\rho, m) := \sqrt{\rho} + \frac{\sqrt{\rho}}{2m} .
> > α ≥ α 0 ( ρ , m ) := ρ + 2 m ρ . > Suppose
> Pr u ∈ U [ agree μ ( u , V ) ≥ α ] > max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 ⋅ n 2 q , 2 m + 1 ρ ⋅ M ⋅ n + 1 q ) . > (7.2) > \Pr_{u \in U} [\text{agree}_{\mu}(u,V) \ge \alpha] > \max \left( \frac{(1 + \frac{1}{2m})^7m^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}, \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{M \cdot n + 1}{q} \right) . \tag{7.2}
> > u ∈ U Pr [ agree μ ( u , V ) ≥ α ] > max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 ⋅ q n 2 , ρ 2 m + 1 ⋅ q M ⋅ n + 1 ) . > ( 7.2 ) Then u 0 , … , u l u_0, \ldots, u_l u 0 , … , u l have at least α correlated μ -agreement with V V V , i.e. ∃ v 0 , ⋯ , v l ∈ V \exists v_0, \cdots, v_l \in V ∃ v 0 , ⋯ , v l ∈ V such that
> μ ( { x ∈ D : ∀ 0 ≤ i ≤ l , u i ( x ) = v i ( x ) } ) ≥ α . > > \mu \left(\{x \in \mathcal{D} : \forall 0 \le i \le l, u_i(x) = v_i(x)\}\right) \ge \alpha .
> > μ ( { x ∈ D : ∀0 ≤ i ≤ l , u i ( x ) = v i ( x )} ) ≥ α . > 则其逆否命题为:如果 u 0 , … , u l u_0, \ldots, u_l u 0 , … , u l 与 V V V 有至多 α 的 correlated μ -agreement ,那么有
> Pr u ∈ U [ agree μ ( u , V ) ≥ α ] ≤ max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 ⋅ n 2 q , 2 m + 1 ρ ⋅ M ⋅ n + 1 q ) . > > \Pr_{u \in U} [\text{agree}_{\mu}(u,V) \ge \alpha] \le \max \left( \frac{(1 + \frac{1}{2m})^7m^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}, \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{M \cdot n + 1}{q} \right) .
> > u ∈ U Pr [ agree μ ( u , V ) ≥ α ] ≤ max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 ⋅ q n 2 , ρ 2 m + 1 ⋅ q M ⋅ n + 1 ) . > 由定理 7.4 的逆否命题,取 α = α ( 0 ) ( ρ , m ) \alpha = \alpha^{(0)}(\rho, m) α = α ( 0 ) ( ρ , m ) ,μ ≡ 1 \mu \equiv 1 μ ≡ 1 以及 M = 1 M = 1 M = 1 ,有
Pr x 1 , … , x t [ E ( 0 ) ] = Pr u ∈ U [ agree μ ( u , V ) > α ( 0 ) ( ρ , m ) ] (为什么这里括号里能直接改为严格的 > ?) ≤ max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 ⋅ n 2 q , 2 m + 1 ρ ⋅ M ⋅ n + 1 q ) = max ( ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ n 2 q , 2 m + 1 ρ ⋅ n + 1 q ) \begin{aligned}
\Pr_{x_1, \ldots, x_t} [E^{(0)}] & = \Pr_{u \in U} [\text{agree}_{\mu}(u,V) > \alpha^{(0)}(\rho, m)] \\
& {\color{orange}\text{(为什么这里括号里能直接改为严格的$>$?)}} \\
& \le \max \left( \frac{(1 + \frac{1}{2m})^7m^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}, \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{M \cdot n + 1}{q} \right) \\
& = \max \left( \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}, \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{n + 1}{q} \right)
\end{aligned} x 1 , … , x t Pr [ E ( 0 ) ] = u ∈ U Pr [ agree μ ( u , V ) > α ( 0 ) ( ρ , m )] ( 为什么这里括号里能直接改为严格的 > ?) ≤ max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 ⋅ q n 2 , ρ 2 m + 1 ⋅ q M ⋅ n + 1 ) = max ( 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q n 2 , ρ 2 m + 1 ⋅ q n + 1 ) 注意,根据定理 7.4 以及定理 1.2,其中 V = R S [ F q , D ( 0 ) , k ( 0 ) ] V = \mathsf{RS}[\mathbb{F}_q, \mathcal{D}^{(0)}, k^{(0)}] V = RS [ F q , D ( 0 ) , k ( 0 ) ] ,n = ∣ D ( 0 ) ∣ n = |\mathcal{D}^{(0)}| n = ∣ D ( 0 ) ∣ , ρ = k ( 0 ) + 1 n \rho = \frac{k^{(0)} + 1}{n} ρ = n k ( 0 ) + 1 。
下面推导下
( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ n 2 q > 2 m + 1 ρ ⋅ n + 1 q \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q} > \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{n + 1}{q} 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q n 2 > ρ 2 m + 1 ⋅ q n + 1 由于
( m + 1 2 ) 7 3 ≥ 2 m + 1 ⇒ ( 2 m + 1 ) 7 3 × 2 7 ≥ 2 m + 1 ⇒ ( 2 m + 1 ) 6 ≥ 3 × 2 7 \begin{aligned}
& \frac{(m+\frac{1}{2})^7}{3} \ge 2m + 1 \\
\Rightarrow & \frac{(2m + 1)^7}{3 \times 2^7} \ge 2m + 1 \\
\Rightarrow & (2m + 1)^6 \ge 3 \times 2^7 \\
\end{aligned} ⇒ ⇒ 3 ( m + 2 1 ) 7 ≥ 2 m + 1 3 × 2 7 ( 2 m + 1 ) 7 ≥ 2 m + 1 ( 2 m + 1 ) 6 ≥ 3 × 2 7 由定理中的条件 m ≥ 3 m \ge 3 m ≥ 3 ,( 2 m + 1 ) 6 (2m + 1)^6 ( 2 m + 1 ) 6 在 m ≥ 3 m \ge 3 m ≥ 3 是增函数,因此 ( 2 m + 1 ) 6 ≥ ( 2 × 3 + 1 ) 6 = 7 6 = 117649 (2m + 1)^6 \ge (2 \times 3 + 1)^6 = 7^6 = 117649 ( 2 m + 1 ) 6 ≥ ( 2 × 3 + 1 ) 6 = 7 6 = 117649 ,同时上式的右边 3 × 2 7 = 384 3 \times 2^7 = 384 3 × 2 7 = 384 ,满足 ( 2 m + 1 ) 6 ≥ 117649 > 3 × 2 7 (2m + 1)^6 \ge 117649 > 3 \times 2^7 ( 2 m + 1 ) 6 ≥ 117649 > 3 × 2 7 ,由此得到 ( m + 1 2 ) 7 3 > 2 m + 1 \frac{(m+\frac{1}{2})^7}{3} > 2m + 1 3 ( m + 2 1 ) 7 > 2 m + 1 (取不到等号)成立。那么
( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ n 2 q > 2 m + 1 ρ 3 / 2 ⋅ n 2 q = 2 m + 1 ρ ⋅ ρ 1 / 2 ⋅ n 2 q (由于 ρ < 1 ) > 2 m + 1 ρ ⋅ n 2 q (由于 n ≥ 2 时 n 2 > n + 1 ) > 2 m + 1 ρ ⋅ n + 1 q \begin{aligned}
\frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q} & > \frac{2m + 1}{\rho^{3/2}} \cdot \frac{n^2}{q} \\
& = \frac{2m + 1}{\rho \cdot \rho^{1/2}} \cdot \frac{n^2}{q} \\
& {\color{blue}{\text{(由于 $\rho < 1$ )}}} \\
& > \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{n^2}{q} \\
& {\color{blue}{\text{(由于 $n \ge 2$ 时 $n^2 > n + 1$ )}}} \\
& > \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{n + 1}{q}
\end{aligned} 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q n 2 > ρ 3/2 2 m + 1 ⋅ q n 2 = ρ ⋅ ρ 1/2 2 m + 1 ⋅ q n 2 ( 由于 ρ < 1 ) > ρ 2 m + 1 ⋅ q n 2 ( 由于 n ≥ 2 时 n 2 > n + 1 ) > ρ 2 m + 1 ⋅ q n + 1 从而
Pr x 1 , … , x t [ E ( 0 ) ] ≤ max ( ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ n 2 q , 2 m + 1 ρ ⋅ n + 1 q ) = ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ n 2 q \begin{aligned}
\Pr_{x_1, \ldots, x_t} [E^{(0)}] & \le \max \left( \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}, \frac{2m + 1}{\sqrt{\rho}} \cdot \frac{n + 1}{q} \right) \\
& = \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q}
\end{aligned} x 1 , … , x t Pr [ E ( 0 ) ] ≤ max ( 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q n 2 , ρ 2 m + 1 ⋅ q n + 1 ) = 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q n 2 令
ϵ = ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ n 2 q (注意其中 n = ∣ D ( 0 ) ∣ ) \epsilon = \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{n^2}{q} {\color{blue}\quad {\text{(注意其中 $n = |\mathcal{D}^{(0)}|$)}}} ϵ = 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q n 2 ( 注意其中 n = ∣ D ( 0 ) ∣) 得
Pr x 1 , … , x t [ E ( 0 ) ] ≤ ϵ (8.8) \Pr_{x_1, \ldots, x_t} [E^{(0)}] \le \epsilon \tag{8.8} x 1 , … , x t Pr [ E ( 0 ) ] ≤ ϵ ( 8.8 ) 现在固定 i ∈ { 0 , … , r − 1 } i \in \{0, \ldots, r - 1\} i ∈ { 0 , … , r − 1 } 。定义事件 E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 为
agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) > max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1 / 2 m ) ) . (8.9) \text{agree}_{\nu^{(i+1)}} \left(f_{f^{(i)},z^{(i)}}^{(i+1)}, V^{(i+1)}\right) > \max \left( \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right), \sqrt{\rho}(1 + 1/2m) \right) . \tag{8.9} agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) > max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1/2 m ) ) . ( 8.9 ) 📖 Notes
理解下事件 E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 。根据定义
> > agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) = max g ( i + 1 ) ∈ V ( i + 1 ) agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , g ( i + 1 ) ) > = max g ( i + 1 ) ∈ V ( i + 1 ) 1 ∣ D ( i + 1 ) ∣ ∑ x : f f ( i ) , z ( i ) ( i + 1 ) ( x ) = g ( i + 1 ) ( x ) ν ( i + 1 ) ( x ) > = max g ( i + 1 ) ∈ V ( i + 1 ) 1 ∣ D ( i + 1 ) ∣ ∑ x : f f ( i ) , z ( i ) ( i + 1 ) ( x ) = g ( i + 1 ) ( x ) E g ′ ∈ C x ( i ) [ μ ( i ) ( g ′ ) ] > > > \begin{aligned}
> \text{agree}_{\nu^{(i+1)}} \left(f_{f^{(i)},z^{(i)}}^{(i+1)}, V^{(i+1)}\right) & = \max_{g^{(i+1)} \in V^{(i+1)}} \text{agree}_{\nu^{(i+1)}} \left(f_{f^{(i)},z^{(i)}}^{(i+1)}, g^{(i+1)} \right) \\
> & = \max_{g^{(i+1)} \in V^{(i+1)}} \frac{1}{|\mathcal{D}^{(i+1)}|} \sum_{x:f_{f^{(i)},z^{(i)}}^{(i+1)}(x) = g^{(i+1)}(x)} \nu^{(i+1)}(x)\\
> & = \max_{g^{(i+1)} \in V^{(i+1)}} \frac{1}{|\mathcal{D}^{(i+1)}|} \sum_{x:f_{f^{(i)},z^{(i)}}^{(i+1)}(x) = g^{(i+1)}(x)} \mathbb{E}_{g' \in C_x^{(i)}} \left[ \mu^{(i)}(g') \right] \\
> \end{aligned}
> > > agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) > > > = g ( i + 1 ) ∈ V ( i + 1 ) max agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , g ( i + 1 ) ) = g ( i + 1 ) ∈ V ( i + 1 ) max ∣ D ( i + 1 ) ∣ 1 x : f f ( i ) , z ( i ) ( i + 1 ) ( x ) = g ( i + 1 ) ( x ) ∑ ν ( i + 1 ) ( x ) = g ( i + 1 ) ∈ V ( i + 1 ) max ∣ D ( i + 1 ) ∣ 1 x : f f ( i ) , z ( i ) ( i + 1 ) ( x ) = g ( i + 1 ) ( x ) ∑ E g ′ ∈ C x ( i ) [ μ ( i ) ( g ′ ) ] > 衡量的是由 f ( i ) f^{(i)} f ( i ) 与随机数 z ( i ) z^{(i)} z ( i ) 构造得到 f f ( i ) , z ( i ) ( i + 1 ) f_{f^{(i)},z^{(i)}}^{(i+1)} f f ( i ) , z ( i ) ( i + 1 ) 后,在 D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 中找到使得 f f ( i ) , z ( i ) ( i + 1 ) f_{f^{(i)},z^{(i)}}^{(i+1)} f f ( i ) , z ( i ) ( i + 1 ) 能与 V ( i + 1 ) V^{(i+1)} V ( i + 1 ) 中的一个多项式 g ( i + 1 ) g^{(i+1)} g ( i + 1 ) 一致的 x x x ,再计算由这些 x x x 对应的在 D ( i ) \mathcal{D}^{(i)} D ( i ) 中的陪集中的元素的 μ ( i ) \mu^{(i)} μ ( i ) weight 的期望值之和。
( 8.9 ) (8.9) ( 8.9 ) 式右边中
> > agree μ ( i ) ( f ( i ) , V ( i ) ) = max g ( i ) ∈ V ( i ) 1 ∣ D ( i ) ∣ ∑ x : f ( i ) ( x ) = g ( i ) ( x ) μ ( i ) ( x ) > > > \begin{aligned}
> \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right) & = \max_{g^{(i)} \in V^{(i)}} \frac{1}{|\mathcal{D}^{(i)}|} \sum_{x:f^{(i)}(x) = g^{(i)}(x)} \mu^{(i)}(x)
> \end{aligned}
> > > agree μ ( i ) ( f ( i ) , V ( i ) ) = g ( i ) ∈ V ( i ) max ∣ D ( i ) ∣ 1 x : f ( i ) ( x ) = g ( i ) ( x ) ∑ μ ( i ) ( x ) > > μ ( i ) ( x ) \mu^{(i)}(x) μ ( i ) ( x ) 衡量的是当从 f ( i ) f^{(i)} f ( i ) 中 qurey x x x 时,在 FRI QUERY 阶段能通过的概率。
E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 事件想定义这样一些事件,通过 f ( i ) f^{(i)} f ( i ) 与 z ( i ) z^{(i)} z ( i ) 构造得到的 f f ( i ) , z ( i ) ( i + 1 ) f_{f^{(i)},z^{(i)}}^{(i+1)} f f ( i ) , z ( i ) ( i + 1 ) ,对于 V ( i + 1 ) V^{(i+1)} V ( i + 1 ) 中的一个多项式 g ( i + 1 ) g^{(i+1)} g ( i + 1 ) ,取出使得它们值相同的点 x x x 的集合,去计算这些点对应陪集的 μ ( i ) \mu^{(i)} μ ( i ) weight 的期望之和与 D ( i + 1 ) \mathcal{D}^{(i+1)} D ( i + 1 ) 的大小的比值。
固定 f ( i ) f^{(i)} f ( i ) 与 μ ( i ) \mu^{(i)} μ ( i ) ,则事件 E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 是由随机数 z ( i ) z^{(i)} z ( i ) 决定的。根据 μ ( i + 1 ) \mu^{(i+1)} μ ( i + 1 ) 的定义,有
μ ( i + 1 ) ( g ) = { ν ( i + 1 ) ( g ) f ( i + 1 ) ( g ) = f f ( i ) , z ( i ) ( i + 1 ) ( g ) 0 otherwise \mu^{(i+1)}(g) =
\begin{cases}
\nu^{(i+1)}(g) & f^{(i+1)}(g) = f_{f^{(i)}, z^{(i)}}^{(i+1)}(g) \\
0 & \text{otherwise}
\end{cases} μ ( i + 1 ) ( g ) = { ν ( i + 1 ) ( g ) 0 f ( i + 1 ) ( g ) = f f ( i ) , z ( i ) ( i + 1 ) ( g ) otherwise 当满足条件 f ( i + 1 ) ( g ) = f f ( i ) , z ( i ) ( i + 1 ) ( g ) f^{(i+1)}(g) = f_{f^{(i)}, z^{(i)}}^{(i+1)}(g) f ( i + 1 ) ( g ) = f f ( i ) , z ( i ) ( i + 1 ) ( g ) 时,μ ( i + 1 ) ( g ) \mu^{(i+1)}(g) μ ( i + 1 ) ( g ) 才会与 ν ( i + 1 ) ( g ) \nu^{(i+1)}(g) ν ( i + 1 ) ( g ) 相等。自然可以得到
agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) \text{agree}_{\mu^{(i+1)}} \left(f^{(i+1)}, V^{(i+1)}\right) \le \text{agree}_{\nu^{(i+1)}} \left(f_{f^{(i)},z^{(i)}}^{(i+1)}, V^{(i+1)}\right) agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) 因此如果事件 E i + 1 E^{i+1} E i + 1 不发生,那么再根据 ( 8.9 ) (8.9) ( 8.9 ) 式可以得到
agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) ≤ max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1 / 2 m ) ) \text{agree}_{\mu^{(i+1)}} \left(f^{(i+1)}, V^{(i+1)}\right) \le \text{agree}_{\nu^{(i+1)}} \left(f_{f^{(i)},z^{(i)}}^{(i+1)}, V^{(i+1)}\right) \le \max \left( \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right), \sqrt{\rho}(1 + 1/2m) \right) agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ agree ν ( i + 1 ) ( f f ( i ) , z ( i ) ( i + 1 ) , V ( i + 1 ) ) ≤ max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1/2 m ) ) 则
agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1 / 2 m ) ) (8.10) \text{agree}_{\mu^{(i+1)}} \left(f^{(i+1)}, V^{(i+1)}\right) \le \max \left( \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right), \sqrt{\rho}(1 + 1/2m) \right) \tag{8.10} agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1/2 m ) ) ( 8.10 ) 令 α = max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1 / 2 m ) ) \alpha = \max \left( \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right), \sqrt{\rho}(1 + 1/2m) \right) α = max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1/2 m ) ) 。根据定义,展开 f f ( i ) , z ( i ) ( i + 1 ) f_{f^{(i)},z^{(i)}}^{(i+1)} f f ( i ) , z ( i ) ( i + 1 ) ,得到事件 E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 为
agree ν ( i + 1 ) ( u 0 + z ( i ) u 1 + … + ( z ( i ) ) l ( i ) − 1 u l ( i ) − 1 , V ( i + 1 ) ) > α , \text{agree}_{\nu^{(i+1)}} \left(u_0 + z^{(i)}u_1 + \ldots + (z^{(i)})^{l^{(i)} -1} u_{l^{(i)} -1}, V^{(i+1)}\right) > \alpha, agree ν ( i + 1 ) ( u 0 + z ( i ) u 1 + … + ( z ( i ) ) l ( i ) − 1 u l ( i ) − 1 , V ( i + 1 ) ) > α , 其中 u 0 , … , u l ( i ) − 1 : D ( i + 1 ) → F u_0, \ldots, u_{l^{(i)} - 1}: \mathcal{D}^{(i+1)} \rightarrow \mathbb{F} u 0 , … , u l ( i ) − 1 : D ( i + 1 ) → F 为在 FRI 协议定义中由 f ( i ) f^{(i)} f ( i ) 得到的函数(见命题 8.1)。这正是定理 7.2 的所处理的情况。
📖 回顾定理 7.2
Theorem 7.2 (Weighted correlated agreement over curves – Version II). Let V , q , n , k V, q, n, k V , q , n , k and ρ be as defined in Theorem 1.2. Let u = { u 0 , ⋯ , u l } ⊂ F q D \mathbf{u} = \{u_0, \cdots, u_l\} \subset \mathbb{F}_q^{\mathcal{D}} u = { u 0 , ⋯ , u l } ⊂ F q D . Let μ : D → [ 0 , 1 ] \mu : \mathcal{D} \rightarrow [0,1] μ : D → [ 0 , 1 ] be a vector of weights, whose values all have denominator M M M . Let m ≥ 3 m \ge 3 m ≥ 3 and let
> α ≥ α 0 ( ρ , m ) : = ρ + ρ 2 m . > > \alpha \ge \alpha_0(\rho, m) := \sqrt{\rho} + \frac{\rho}{2m}.
> > α ≥ α 0 ( ρ , m ) := ρ + 2 m ρ . > Let
> S = { z ∈ F q : agree μ ( u 0 + z u 1 + ⋯ + z l u l , V ) ≥ α } > > S = \{z \in \mathbb{F}_q : \text{agree}_{\mu}(u_0 + zu_1 + \cdots + z^lu_l, V) \ge \alpha\}
> > S = { z ∈ F q : agree μ ( u 0 + z u 1 + ⋯ + z l u l , V ) ≥ α } > and suppose
> ∣ S ∣ > max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 n 2 l , 2 m + 1 ρ ( M ⋅ n + 1 ) l ) . > (7.1) > |S| > \max\left(\frac{(1 + \frac{1}{2m})^7 m^7}{3 \rho^{3/2}}n^2 l, \frac{2m + 1}{\sqrt{\rho}}(M \cdot n + 1)l \right) . \tag{7.1}
> > ∣ S ∣ > max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 n 2 l , ρ 2 m + 1 ( M ⋅ n + 1 ) l ) . > ( 7.1 ) Then u 0 , … , u l u_0, \ldots, u_l u 0 , … , u l have at least α correlated μ -agreement with V V V , i.e. ∃ v 0 , ⋯ , v l ∈ V \exists v_0, \cdots, v_l \in V ∃ v 0 , ⋯ , v l ∈ V such that
> μ ( { x ∈ D : ∀ 0 ≤ i ≤ l , u i ( x ) = v i ( x ) } ) ≥ α . > > \mu(\{x \in \mathcal{D}: \forall 0 \le i \le l, u_i(x) = v_i(x)\}) \ge \alpha .
> > μ ({ x ∈ D : ∀0 ≤ i ≤ l , u i ( x ) = v i ( x )}) ≥ α . > 在定理 7.2 中取 M = ∣ D ( 0 ) ∣ / ∣ D ( i + 1 ) ∣ M = |\mathcal{D}^{(0)}|/|\mathcal{D}^{(i+1)}| M = ∣ D ( 0 ) ∣/∣ D ( i + 1 ) ∣ ,这时我们分析的是 i + 1 i + 1 i + 1 的情况,因此定理中 n = ∣ D i + 1 ∣ n = |\mathcal{D}^{i+1}| n = ∣ D i + 1 ∣ ,则 M ⋅ n = ∣ D ( 0 ) ∣ M \cdot n = |\mathcal{D}^{(0)}| M ⋅ n = ∣ D ( 0 ) ∣ 。由于我们分析的 u = { u 0 , ⋯ , u l ( i ) − 1 } \mathbf{u} = \{u_0, \cdots, u_{l^{(i)} - 1}\} u = { u 0 , ⋯ , u l ( i ) − 1 } ,因此 式 ( 7.1 ) (7.1) ( 7.1 ) 中的 l = l ( i ) − 1 l = l^{(i)} - 1 l = l ( i ) − 1 。根据定理 7.2 ,如果
Pr z ( i ) [ E ( i + 1 ) ] ≥ ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ) \Pr_{z^{(i)}}\left[E^{(i+1)}\right] \ge (l^{(i)} - 1) \cdot \left(\epsilon^{(i)} + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \right) z ( i ) Pr [ E ( i + 1 ) ] ≥ ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ) 其中,
ϵ ( i ) = ∣ D ( i + 1 ) ∣ 2 ∣ D ( 0 ) ∣ 2 ϵ = ϵ ( l ( 0 ) ⋯ l ( i ) ) 2 = ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ ∣ D ( 0 ) ∣ 2 q ⋅ 1 ( l ( 0 ) ⋯ l ( i ) ) 2 \epsilon^{(i)} = \frac{|\mathcal{D}^{(i+1)}|^2}{|\mathcal{D}^{(0)}|^2} \epsilon = \frac{\epsilon}{(l^{(0)}\cdots l^{(i)})^2} = \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{|\mathcal{D}^{(0)}|^2}{q} \cdot \frac{1}{(l^{(0)}\cdots l^{(i)})^2} ϵ ( i ) = ∣ D ( 0 ) ∣ 2 ∣ D ( i + 1 ) ∣ 2 ϵ = ( l ( 0 ) ⋯ l ( i ) ) 2 ϵ = 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q ∣ D ( 0 ) ∣ 2 ⋅ ( l ( 0 ) ⋯ l ( i ) ) 2 1 如果满足上述条件,对照定理 7.2 ,则有
∣ S ∣ ≥ ∣ F ∣ ⋅ ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 F ) = ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ ∣ D ( 0 ) ∣ 2 q ⋅ ∣ D ( i + 1 ) ∣ 2 ∣ D ( 0 ) ∣ 2 ⋅ ∣ F ∣ ⋅ ( l ( i ) − 1 ) + 2 m + 1 ρ ⋅ ( ∣ D ( 0 ) ∣ + 1 ) ⋅ ( l ( i ) − 1 ) = ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 ⋅ ∣ D ( i + 1 ) ∣ 2 ⋅ ( l ( i ) − 1 ) + 2 m + 1 ρ ⋅ ( M ⋅ n + 1 ) ⋅ ( l ( i ) − 1 ) = ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 ⋅ n 2 ⋅ ( l ( i ) − 1 ) + 2 m + 1 ρ ⋅ ( M ⋅ n + 1 ) ⋅ ( l ( i ) − 1 ) > max ( ( 1 + 1 2 m ) 7 m 7 3 ρ 3 / 2 n 2 l , 2 m + 1 ρ ( M ⋅ n + 1 ) l ) \begin{aligned}
|S| & \ge |\mathbb{F}| \cdot (l^{(i)} - 1) \cdot \left(\epsilon^{(i)} + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{\mathbb{F}} \right) \\
& = \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{|\mathcal{D}^{(0)}|^2}{q} \cdot \frac{|\mathcal{D}^{(i+1)}|^2}{|\mathcal{D}^{(0)}|^2} \cdot |\mathbb{F}| \cdot (l^{(i)} - 1) + \frac{2m + 1}{\sqrt{\rho}}\cdot (|\mathcal{D}^{(0)}| + 1) \cdot (l^{(i)} - 1) \\
& = \frac{(1 + \frac{1}{2m})^7 m^7}{3 \rho^{3/2}} \cdot |\mathcal{D}^{(i+1)}|^2 \cdot (l^{(i)} - 1) + \frac{2m + 1}{\sqrt{\rho}}\cdot (M \cdot n + 1) \cdot (l^{(i)} - 1) \\
& = \frac{(1 + \frac{1}{2m})^7 m^7}{3 \rho^{3/2}} \cdot n^2 \cdot (l^{(i)} - 1) + \frac{2m + 1}{\sqrt{\rho}}\cdot (M \cdot n + 1) \cdot (l^{(i)} - 1) \\
& > \max\left(\frac{(1 + \frac{1}{2m})^7 m^7}{3 \rho^{3/2}}n^2 l, \frac{2m + 1}{\sqrt{\rho}}(M \cdot n + 1)l \right)
\end{aligned} ∣ S ∣ ≥ ∣ F ∣ ⋅ ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + ρ 2 m + 1 ⋅ F ∣ D ( 0 ) ∣ + 1 ) = 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q ∣ D ( 0 ) ∣ 2 ⋅ ∣ D ( 0 ) ∣ 2 ∣ D ( i + 1 ) ∣ 2 ⋅ ∣ F ∣ ⋅ ( l ( i ) − 1 ) + ρ 2 m + 1 ⋅ ( ∣ D ( 0 ) ∣ + 1 ) ⋅ ( l ( i ) − 1 ) = 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 ⋅ ∣ D ( i + 1 ) ∣ 2 ⋅ ( l ( i ) − 1 ) + ρ 2 m + 1 ⋅ ( M ⋅ n + 1 ) ⋅ ( l ( i ) − 1 ) = 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 ⋅ n 2 ⋅ ( l ( i ) − 1 ) + ρ 2 m + 1 ⋅ ( M ⋅ n + 1 ) ⋅ ( l ( i ) − 1 ) > max ( 3 ρ 3/2 ( 1 + 2 m 1 ) 7 m 7 n 2 l , ρ 2 m + 1 ( M ⋅ n + 1 ) l ) 满足式 ( 7.1 ) (7.1) ( 7.1 ) ,因此由定理 7.2 可得存在一个集合 S ⊆ D ( i + 1 ) S \subseteq \mathcal{D}^{(i+1)} S ⊆ D ( i + 1 ) ,存在码字 v 0 , … , v l ( i ) − 1 ∈ V v_0, \ldots, v_{l^{(i)} - 1} \in V v 0 , … , v l ( i ) − 1 ∈ V ,满足 u i u_i u i 与 v i v_i v i 在 S S S 上一致,并且 ν ( i + 1 ) ( S ) > α \nu^{(i+1)}(S) > \alpha ν ( i + 1 ) ( S ) > α 。回顾式 ( 8.4 ) (8.4) ( 8.4 ) ,知
u ( i ) ( g ( i + 1 ) ) = M g ( i + 1 ) ( i ) ⋅ f ( i ) ∣ C g ( i + 1 ) ( i ) \mathbf{u}^{(i)}\left(g^{(i+1)}\right) = M_{g^{(i+1)}}^{(i)} \cdot f^{(i)}|_{C_{g(i+1)}^{(i)}} u ( i ) ( g ( i + 1 ) ) = M g ( i + 1 ) ( i ) ⋅ f ( i ) ∣ C g ( i + 1 ) ( i ) 可逆的插值映射 M g ( i + 1 ) ( i ) M_{g^{(i+1)}}^{(i)} M g ( i + 1 ) ( i ) 将 f ( i ) ∣ C g ( i + 1 ) ( i ) f^{(i)}|_{C_{g(i+1)}^{(i)}} f ( i ) ∣ C g ( i + 1 ) ( i ) 映射到了 u ( i ) ( g ( i + 1 ) ) \mathbf{u}^{(i)}\left(g^{(i+1)}\right) u ( i ) ( g ( i + 1 ) ) 。使用其逆映射,即 evaluation 映射,对每一个 g ( i + 1 ) ∈ D ( i + 1 ) g^{(i+1)} \in \mathcal{D}^{(i+1)} g ( i + 1 ) ∈ D ( i + 1 ) ,将该逆映射作用到 v 0 ( g ( i + 1 ) ) , … , v l ( i ) − 1 ( g ( i + 1 ) ) v_0(g^{(i+1)}), \ldots, v_{l^{(i)}-1}(g^{(i+1)}) v 0 ( g ( i + 1 ) ) , … , v l ( i ) − 1 ( g ( i + 1 ) ) 上,设 C g ( i + 1 ) ( i ) = { g 0 ′ , ⋯ , g l ( i ) − 1 ′ } C_{g^{(i+1)}}^{(i)} =\{g'_0, \cdots, g'_{l^{(i)}-1}\} C g ( i + 1 ) ( i ) = { g 0 ′ , ⋯ , g l ( i ) − 1 ′ } ,则作用后的结果为
( M g ( i + 1 ) ( i ) ) − 1 ⋅ [ v 0 ( g ( i + 1 ) ) v 1 ( g ( i + 1 ) ) ⋮ v l ( i ) − 1 ( g ( i + 1 ) ) ] = V C g ( i + 1 ) ( i ) ⋅ [ v 0 ( g ( i + 1 ) ) v 1 ( g ( i + 1 ) ) ⋮ v l ( i ) − 1 ( g ( i + 1 ) ) ] = [ 1 g 0 ′ ( g 0 ′ ) 2 ⋯ ( g 0 ′ ) l ( i ) − 1 1 g 1 ′ ( g 1 ′ ) 2 ⋯ ( g 1 ′ ) l ( i ) − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 g l ( i ) − 1 ′ ( g l ( i ) − 1 ′ ) 2 ⋯ ( g l ( i ) − 1 ′ ) l ( i ) − 1 ] [ v 0 ( g ( i + 1 ) ) v 1 ( g ( i + 1 ) ) ⋮ v l ( i ) − 1 ( g ( i + 1 ) ) ] = [ v 0 ( g ( i + 1 ) ) + v 1 ( g ( i + 1 ) ) g 0 ′ + u 2 ( g 0 ′ ) 2 + ⋯ + v l ( i ) − 1 ( g ( i + 1 ) ) ( g 0 ′ ) l ( i ) − 1 v 0 ( g ( i + 1 ) ) + v 1 ( g ( i + 1 ) ) g 1 ′ + u 2 ( g 1 ′ ) 2 + ⋯ + v l ( i ) − 1 ( g ( i + 1 ) ) ( g 1 ′ ) l ( i ) − 1 ⋮ v 0 ( g ( i + 1 ) ) + v 1 ( g ( i + 1 ) ) g l ( i ) − 1 ′ + u 2 ( g l ( i ) − 1 ′ ) 2 + ⋯ + v l ( i ) − 1 ( g ( i + 1 ) ) ( g l ( i ) − 1 ′ ) l ( i ) − 1 ] = [ h ( i ) ( g 0 ′ ) h ( i ) ( g 1 ′ ) ⋮ h ( i ) ( g l ( i ) − 1 ′ ) ] \begin{aligned}
\left(M_{g^{(i+1)}}^{(i)}\right)^{-1} \cdot \begin{bmatrix}
v_0(g^{(i+1)}) \\
v_1(g^{(i+1)}) \\
\vdots \\
v_{l^{(i)}-1}(g^{(i+1)})
\end{bmatrix} & = V_{C_{g^{(i+1)}}^{(i)}} \cdot \begin{bmatrix}
v_0(g^{(i+1)}) \\
v_1(g^{(i+1)}) \\
\vdots \\
v_{l^{(i)}-1}(g^{(i+1)})
\end{bmatrix} \\
& =
\begin{bmatrix}
1 & g'_0 & (g'_0)^2 & \cdots & (g'_0)^{l^{(i)}-1} \\
1 & g'_1 & (g'_1)^2 & \cdots & (g'_1)^{l^{(i)}-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & g'_{l^{(i)-1}} & (g'_{l^{(i)}-1})^2 & \cdots & (g'_{l^{(i)}-1})^{l^{(i)}-1}
\end{bmatrix}
\begin{bmatrix}
v_0(g^{(i+1)}) \\
v_1(g^{(i+1)}) \\
\vdots \\
v_{l^{(i)}-1}(g^{(i+1)})
\end{bmatrix} \\
& = \begin{bmatrix}
v_0(g^{(i+1)}) + v_1(g^{(i+1)}) g'_0 + u_2 (g'_0)^2 + \cdots + v_{l^{(i)}-1}(g^{(i+1)}) (g'_0)^{l^{(i)}-1}\\
v_0(g^{(i+1)}) + v_1(g^{(i+1)}) g'_1 + u_2 (g'_1)^2 + \cdots + v_{l^{(i)}-1}(g^{(i+1)}) (g'_1)^{l^{(i)}-1}\\
\vdots \\
v_0(g^{(i+1)}) + v_1(g^{(i+1)}) g'_{l^{(i)-1}} + u_2 (g'_{l^{(i)}-1})^2 + \cdots + v_{l^{(i)}-1}(g^{(i+1)}) (g'_{l^{(i)}-1})^{l^{(i)}-1}
\end{bmatrix} \\
& = \begin{bmatrix}
h^{(i)}(g'_0)\\
h^{(i)}(g'_1)\\
\vdots \\
h^{(i)}(g'_{l^{(i)}-1})
\end{bmatrix}
\end{aligned} ( M g ( i + 1 ) ( i ) ) − 1 ⋅ ⎣ ⎡ v 0 ( g ( i + 1 ) ) v 1 ( g ( i + 1 ) ) ⋮ v l ( i ) − 1 ( g ( i + 1 ) ) ⎦ ⎤ = V C g ( i + 1 ) ( i ) ⋅ ⎣ ⎡ v 0 ( g ( i + 1 ) ) v 1 ( g ( i + 1 ) ) ⋮ v l ( i ) − 1 ( g ( i + 1 ) ) ⎦ ⎤ = ⎣ ⎡ 1 1 ⋮ 1 g 0 ′ g 1 ′ ⋮ g l ( i ) − 1 ′ ( g 0 ′ ) 2 ( g 1 ′ ) 2 ⋮ ( g l ( i ) − 1 ′ ) 2 ⋯ ⋯ ⋱ ⋯ ( g 0 ′ ) l ( i ) − 1 ( g 1 ′ ) l ( i ) − 1 ⋮ ( g l ( i ) − 1 ′ ) l ( i ) − 1 ⎦ ⎤ ⎣ ⎡ v 0 ( g ( i + 1 ) ) v 1 ( g ( i + 1 ) ) ⋮ v l ( i ) − 1 ( g ( i + 1 ) ) ⎦ ⎤ = ⎣ ⎡ v 0 ( g ( i + 1 ) ) + v 1 ( g ( i + 1 ) ) g 0 ′ + u 2 ( g 0 ′ ) 2 + ⋯ + v l ( i ) − 1 ( g ( i + 1 ) ) ( g 0 ′ ) l ( i ) − 1 v 0 ( g ( i + 1 ) ) + v 1 ( g ( i + 1 ) ) g 1 ′ + u 2 ( g 1 ′ ) 2 + ⋯ + v l ( i ) − 1 ( g ( i + 1 ) ) ( g 1 ′ ) l ( i ) − 1 ⋮ v 0 ( g ( i + 1 ) ) + v 1 ( g ( i + 1 ) ) g l ( i ) − 1 ′ + u 2 ( g l ( i ) − 1 ′ ) 2 + ⋯ + v l ( i ) − 1 ( g ( i + 1 ) ) ( g l ( i ) − 1 ′ ) l ( i ) − 1 ⎦ ⎤ = ⎣ ⎡ h ( i ) ( g 0 ′ ) h ( i ) ( g 1 ′ ) ⋮ h ( i ) ( g l ( i ) − 1 ′ ) ⎦ ⎤ 可以得到函数 h ( i ) : D ( i ) → F h^{(i)}: \mathcal{D}^{(i)} \rightarrow \mathbb{F} h ( i ) : D ( i ) → F ,对于每一个 g ( i ) ∈ C g ( i + 1 ) ( i ) g^{(i)} \in C_{g^{(i+1)}}^{(i)} g ( i ) ∈ C g ( i + 1 ) ( i ) 有
h ( i ) ( g ( i ) ) = ∑ j = 0 l ( i ) − 1 ( g ( i ) ) j ⋅ v j ( g ( i + 1 ) ) = ∑ j = 0 l ( i ) − 1 ( g ( i ) ) j ⋅ v j ( ( g ( i ) ) l ( i ) ) . h^{(i)}(g^{(i)}) = \sum_{j = 0}^{l^{(i)}-1} \left(g^{(i)}\right)^j \cdot v_j\left({\color{blue}{g^{(i+1)}}}\right) = \sum_{j = 0}^{l^{(i)}-1} \left(g^{(i)}\right)^j \cdot v_j \left( {\color{blue}{\left(g^{(i)}\right)^{l^{(i)}}}} \right). h ( i ) ( g ( i ) ) = j = 0 ∑ l ( i ) − 1 ( g ( i ) ) j ⋅ v j ( g ( i + 1 ) ) = j = 0 ∑ l ( i ) − 1 ( g ( i ) ) j ⋅ v j ( ( g ( i ) ) l ( i ) ) . 因此,由于 v j ∈ V ( i + 1 ) v_j \in V^{(i+1)} v j ∈ V ( i + 1 ) ,因此 h ( i ) ∈ V ( i ) h^{(i)} \in V^{(i)} h ( i ) ∈ V ( i ) 。另外,根据定义
agree μ ( i ) ( f ( i ) , V ( i ) ) = max v ∈ V ( i ) agree μ ( i ) ( f ( i ) , v ) ≥ agree μ ( i ) ( f ( i ) , h ( i ) ) = 1 ∣ D ( i ) ∣ ∑ x : f ( i ) ( x ) = h ( i ) ( x ) μ ( i ) ( x ) = ν ( i + 1 ) ( S ) > α , \begin{aligned}
\text{agree}_{\mu^{(i)}}\left( f^{(i)}, V^{(i)} \right) & = \max_{v \in V^{(i)}} \text{agree}_{\mu^{(i)}}\left( f^{(i)}, v \right)\\
& \ge \text{agree}_{\mu^{(i)}}\left( f^{(i)}, h^{(i)} \right) \\
& = \frac{1}{|\mathcal{D}^{(i)}|} \sum_{x: f^{(i)}(x) = h^{(i)}(x)} \mu^{(i)}(x) \\
& = \nu^{(i+1)}(S) \\
& > \alpha,
\end{aligned} agree μ ( i ) ( f ( i ) , V ( i ) ) = v ∈ V ( i ) max agree μ ( i ) ( f ( i ) , v ) ≥ agree μ ( i ) ( f ( i ) , h ( i ) ) = ∣ D ( i ) ∣ 1 x : f ( i ) ( x ) = h ( i ) ( x ) ∑ μ ( i ) ( x ) = ν ( i + 1 ) ( S ) > α , 这与 α 的定义 α = max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1 / 2 m ) ) \alpha = \max \left( \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right), \sqrt{\rho}(1 + 1/2m) \right) α = max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1/2 m ) ) 是矛盾的。那么说明我们在应用定理 7.2 时所给的假设是不成立的,也就是下式成立:
Pr z ( i ) [ E ( i + 1 ) ] < ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ) . \Pr_{z^{(i)}}\left[E^{(i+1)}\right] < (l^{(i)} - 1) \cdot \left(\epsilon^{(i)} + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \right) . z ( i ) Pr [ E ( i + 1 ) ] < ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ) . 因此,如果没有事件 E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 发生,根据 ( 8.10 ) (8.10) ( 8.10 ) 式,对于所有的 i ∈ 0 , 1 , … , r − 1 i \in 0, 1, \ldots, r - 1 i ∈ 0 , 1 , … , r − 1 都有:
agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1 / 2 m ) ) \text{agree}_{\mu^{(i+1)}} \left(f^{(i+1)}, V^{(i+1)}\right) \le \max \left( \text{agree}_{\mu^{(i)}} \left(f^{(i)}, V^{(i)}\right), \sqrt{\rho}(1 + 1/2m) \right) agree μ ( i + 1 ) ( f ( i + 1 ) , V ( i + 1 ) ) ≤ max ( agree μ ( i ) ( f ( i ) , V ( i ) ) , ρ ( 1 + 1/2 m ) ) 根据式 ( 8.8 ) (8.8) ( 8.8 ) 得到
Pr x 1 , … , x t [ E ( 0 ) ] ≤ ϵ , 其中 ϵ = ( m + 1 2 ) 7 3 ρ 3 / 2 ⋅ ∣ D ( 0 ) ∣ 2 q . \Pr_{x_1, \ldots, x_t} [E^{(0)}] \le \epsilon , \quad \text{其中} \epsilon = \frac{(m + \frac{1}{2})^7}{3 \rho^{3/2}} \cdot \frac{{|\mathcal{D}^{(0)}|}^2}{q} {\color{blue}}. x 1 , … , x t Pr [ E ( 0 ) ] ≤ ϵ , 其中 ϵ = 3 ρ 3/2 ( m + 2 1 ) 7 ⋅ q ∣ D ( 0 ) ∣ 2 . 如果事件 E ( 0 ) E^{(0)} E ( 0 ) 或者一些 E ( i + 1 ) E^{(i+1)} E ( i + 1 ) 发生的概率估计为
Pr x 1 , … , x t [ E ( 0 ) ] + ∑ i = 0 r − 1 Pr z ( i ) [ E ( i + 1 ) ] ≤ ϵ + ∑ i = 0 r − 1 ( ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ) ) = ϵ + ∑ i = 0 r − 1 ( l ( i ) − 1 ) ⋅ ϵ ( i ) + ∑ i = 0 r − 1 ( ( l ( i ) − 1 ) ⋅ 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ) = ( 1 + ∑ i = 0 r − 1 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 ) ϵ + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ⋅ ∑ i = 0 r − 1 ( l ( i ) − 1 ) \begin{aligned}
\Pr_{x_1,\ldots, x_t} \left[E^{(0)}\right] + \sum_{i=0}^{r-1} \Pr_{z^{(i)}} \left[E^{(i+1)}\right] & \le \epsilon + \sum_{i=0}^{r-1} \left( (l^{(i)} - 1) \cdot \left(\epsilon^{(i)} + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \right) \right) \\
& = \epsilon + \sum_{i=0}^{r-1} (l^{(i)} - 1) \cdot \epsilon^{(i)} + \sum_{i=0}^{r-1} \left((l^{(i)} - 1) \cdot \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|}\right) \\
& = \left(1 + \sum_{i=0}^{r-1} \frac{l^{(i)} - 1}{(l^{(0)}\cdots l^{(i)})^2} \right) \epsilon + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \cdot \sum_{i=0}^{r-1} (l^{(i)} - 1)
\end{aligned} x 1 , … , x t Pr [ E ( 0 ) ] + i = 0 ∑ r − 1 z ( i ) Pr [ E ( i + 1 ) ] ≤ ϵ + i = 0 ∑ r − 1 ( ( l ( i ) − 1 ) ⋅ ( ϵ ( i ) + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ) ) = ϵ + i = 0 ∑ r − 1 ( l ( i ) − 1 ) ⋅ ϵ ( i ) + i = 0 ∑ r − 1 ( ( l ( i ) − 1 ) ⋅ ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ) = ( 1 + i = 0 ∑ r − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − 1 ) ϵ + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ⋅ i = 0 ∑ r − 1 ( l ( i ) − 1 ) 下面估计下 ∑ i = 0 r − 1 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 \sum_{i=0}^{r-1} \frac{l^{(i)} - 1}{(l^{(0)}\cdots l^{(i)})^2} ∑ i = 0 r − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − 1 ,由于对于 i ∈ { 0 , … , r − 1 } i \in \{0, \ldots, r - 1\} i ∈ { 0 , … , r − 1 } 有 l ( i ) ≥ 2 l^{(i)} \ge 2 l ( i ) ≥ 2 ,因此
∑ i = 0 r − 1 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 = ∑ i = 0 r − 1 ( l ( i ) ( l ( 0 ) ⋯ l ( i ) ) 2 − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 ) = ∑ i = 0 r − 1 ( 1 ( l ( 0 ) ⋯ l ( i − 1 ) ) 2 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 ) = 1 l ( 0 ) + ( − 1 ( l ( 0 ) ) 2 + 1 ( l ( 0 ) ) 2 l ( 1 ) ) + ( − 1 ( l ( 0 ) l ( 1 ) ) 2 + 1 ( l ( 0 ) l ( 1 ) ) 2 l ( 2 ) ) + … + ( − 1 ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 + 1 ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 l ( r − 1 ) ) − 1 ( l ( 0 ) ⋯ l ( r − 1 ) ) 2 ≤ 1 l ( 0 ) + ( − 1 ( l ( 0 ) ) 2 + 1 ( l ( 0 ) ) 2 ⋅ 2 ) + ( − 1 ( l ( 0 ) l ( 1 ) ) 2 + 1 ( l ( 0 ) l ( 1 ) ) 2 ⋅ 2 ) + … + ( − 1 ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 + 1 ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 ⋅ 2 ) − 1 ( l ( 0 ) ⋯ l ( r − 1 ) ) 2 = 1 l ( 0 ) − 1 ( l ( 0 ) ) 2 ⋅ 2 − 1 ( l ( 0 ) l ( 1 ) ) 2 ⋅ 2 − … − 1 ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 ⋅ 2 − 1 ( l ( 0 ) ⋯ l ( r − 1 ) ) 2 < 1 l ( 0 ) < 1 2 \begin{aligned}
\sum_{i=0}^{r-1} \frac{l^{(i)} - 1}{(l^{(0)}\cdots l^{(i)})^2} & = \sum_{i=0}^{r-1} \left(\frac{l^{(i)}}{(l^{(0)}\cdots l^{(i)})^2} - \frac{1}{(l^{(0)}\cdots l^{(i)})^2}\right) \\
& = \sum_{i=0}^{r-1} \left(\frac{1}{(l^{(0)}\cdots l^{(i-1)})^2 l^{(i)}} - \frac{1}{(l^{(0)}\cdots l^{(i)})^2}\right) \\
& = \frac{1}{l^{(0)}} + \left(- \frac{1}{(l^{(0)})^2} + \frac{1}{(l^{(0)})^2l^{(1)}}\right) + \left(- \frac{1}{(l^{(0)}l^{(1)})^2} + \frac{1}{(l^{(0)}l^{(1)})^2l^{(2)}} \right)\\
& \quad + \ldots + \left(- \frac{1}{(l^{(0)}\cdots l^{(r-2)})^2} + \frac{1}{(l^{(0)}\cdots l^{(r-2)})^2l^{(r-1)}} \right) - \frac{1}{(l^{(0)}\cdots l^{(r-1)})^2} \\
& \le \frac{1}{l^{(0)}} + \left(- \frac{1}{(l^{(0)})^2} + \frac{1}{(l^{(0)})^2 \cdot 2}\right) + \left(- \frac{1}{(l^{(0)}l^{(1)})^2} + \frac{1}{(l^{(0)}l^{(1)})^2 \cdot 2} \right)\\
& \quad + \ldots + \left(- \frac{1}{(l^{(0)}\cdots l^{(r-2)})^2} + \frac{1}{(l^{(0)}\cdots l^{(r-2)})^2 \cdot 2} \right) - \frac{1}{(l^{(0)}\cdots l^{(r-1)})^2} \\
& = \frac{1}{l^{(0)}} - \frac{1}{(l^{(0)})^2 \cdot 2} - \frac{1}{(l^{(0)}l^{(1)})^2 \cdot 2} - \ldots - \frac{1}{(l^{(0)}\cdots l^{(r-2)})^2 \cdot 2}\\
& \quad - \frac{1}{(l^{(0)}\cdots l^{(r-1)})^2} \\
& < \frac{1}{l^{(0)}} \\
& < \frac{1}{2}
\end{aligned} i = 0 ∑ r − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − 1 = i = 0 ∑ r − 1 ( ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − ( l ( 0 ) ⋯ l ( i ) ) 2 1 ) = i = 0 ∑ r − 1 ( ( l ( 0 ) ⋯ l ( i − 1 ) ) 2 l ( i ) 1 − ( l ( 0 ) ⋯ l ( i ) ) 2 1 ) = l ( 0 ) 1 + ( − ( l ( 0 ) ) 2 1 + ( l ( 0 ) ) 2 l ( 1 ) 1 ) + ( − ( l ( 0 ) l ( 1 ) ) 2 1 + ( l ( 0 ) l ( 1 ) ) 2 l ( 2 ) 1 ) + … + ( − ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 1 + ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 l ( r − 1 ) 1 ) − ( l ( 0 ) ⋯ l ( r − 1 ) ) 2 1 ≤ l ( 0 ) 1 + ( − ( l ( 0 ) ) 2 1 + ( l ( 0 ) ) 2 ⋅ 2 1 ) + ( − ( l ( 0 ) l ( 1 ) ) 2 1 + ( l ( 0 ) l ( 1 ) ) 2 ⋅ 2 1 ) + … + ( − ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 1 + ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 ⋅ 2 1 ) − ( l ( 0 ) ⋯ l ( r − 1 ) ) 2 1 = l ( 0 ) 1 − ( l ( 0 ) ) 2 ⋅ 2 1 − ( l ( 0 ) l ( 1 ) ) 2 ⋅ 2 1 − … − ( l ( 0 ) ⋯ l ( r − 2 ) ) 2 ⋅ 2 1 − ( l ( 0 ) ⋯ l ( r − 1 ) ) 2 1 < l ( 0 ) 1 < 2 1 📖 另一种证明方法:利用等比数列求和
∑ i = 0 r − 1 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 = ∑ i = 0 r − 1 ( l ( i ) ( l ( 0 ) ⋯ l ( i ) ) 2 − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 ) = ∑ i = 0 r − 1 ( 1 ( l ( 0 ) ⋯ l ( i − 1 ) ) 2 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 ) < ∑ i = 0 r − 1 1 ( l ( 0 ) ⋯ l ( i − 1 ) ) 2 l ( i ) (因为 1 ( l ( 0 ) ⋯ l ( i ) ) 2 > 0 ) < ∑ i = 0 r − 1 1 l ( 0 ) ⋯ l ( i − 1 ) l ( i ) (因为 l ( i ) ≥ 2 , 因此 l ( i ) 2 > l ( i ) ) < ∑ i = 0 r − 1 ( 1 2 ) i + 1 = 1 2 ∑ i = 0 r − 1 ( 1 2 ) i < 1 2 ⋅ 1 2 < 1 2 \begin{aligned}
\sum_{i=0}^{r-1} \frac{l^{(i)} - 1}{(l^{(0)}\cdots l^{(i)})^2} & = \sum_{i=0}^{r-1} \left(\frac{l^{(i)}}{(l^{(0)}\cdots l^{(i)})^2} - \frac{1}{(l^{(0)}\cdots l^{(i)})^2}\right) \\
& = \sum_{i=0}^{r-1} \left(\frac{1}{(l^{(0)}\cdots l^{(i-1)})^2 l^{(i)}} - \frac{1}{(l^{(0)}\cdots l^{(i)})^2}\right) \\
& < \sum_{i=0}^{r-1} \frac{1}{(l^{(0)}\cdots l^{(i-1)})^2 l^{(i)}} \\
& {\color{blue}{\text{(因为 $\frac{1}{(l^{(0)}\cdots l^{(i)})^2} > 0$ )}}} \\
& < \sum_{i=0}^{r-1} \frac{1}{l^{(0)}\cdots l^{(i-1)} l^{(i)}} \\
& {\color{blue}{\text{(因为 $l^{(i)} \ge 2$, 因此 ${l^{(i)}}^2 > l^{(i)}$ )}}} \\
& < \sum_{i=0}^{r-1} \left(\frac{1}{2}\right) ^{i+1} \\
& = \frac{1}{2}\sum_{i=0}^{r-1} \left(\frac{1}{2}\right) ^{i} \\
& < \frac{1}{2} \cdot \frac{1}{2} \\
& < \frac{1}{2}
\end{aligned} i = 0 ∑ r − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − 1 = i = 0 ∑ r − 1 ( ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − ( l ( 0 ) ⋯ l ( i ) ) 2 1 ) = i = 0 ∑ r − 1 ( ( l ( 0 ) ⋯ l ( i − 1 ) ) 2 l ( i ) 1 − ( l ( 0 ) ⋯ l ( i ) ) 2 1 ) < i = 0 ∑ r − 1 ( l ( 0 ) ⋯ l ( i − 1 ) ) 2 l ( i ) 1 ( 因为 ( l ( 0 ) ⋯ l ( i ) ) 2 1 > 0 ) < i = 0 ∑ r − 1 l ( 0 ) ⋯ l ( i − 1 ) l ( i ) 1 ( 因为 l ( i ) ≥ 2, 因此 l ( i ) 2 > l ( i ) ) < i = 0 ∑ r − 1 ( 2 1 ) i + 1 = 2 1 i = 0 ∑ r − 1 ( 2 1 ) i < 2 1 ⋅ 2 1 < 2 1 🤔 Question
因此
Pr x 1 , … , x t [ E ( 0 ) ] + ∑ i = 0 r − 1 Pr z ( i ) [ E ( i + 1 ) ] ≤ ( 1 + ∑ i = 0 r − 1 l ( i ) − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 ) ϵ + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ⋅ ∑ i = 0 r − 1 ( l ( i ) − 1 ) < ( 1 + 1 2 ) ϵ + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ⋅ ∑ i = 0 r − 1 ( l ( i ) − 1 ) < 3 2 ϵ + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ⋅ ∑ i = 0 r − 1 l ( i ) . \begin{aligned}
\Pr_{x_1,\ldots, x_t} \left[E^{(0)}\right] + \sum_{i=0}^{r-1} \Pr_{z^{(i)}} \left[E^{(i+1)}\right] & \le \left(1 + \sum_{i=0}^{r-1} \frac{l^{(i)} - 1}{(l^{(0)}\cdots l^{(i)})^2} \right) \epsilon + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \cdot \sum_{i=0}^{r-1} (l^{(i)} - 1) \\
& < \left(1 + \frac{1}{2} \right) \epsilon + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \cdot \sum_{i=0}^{r-1} (l^{(i)} - 1) \\
& < \frac{3}{2} \epsilon + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \cdot \sum_{i=0}^{r-1} l^{(i)}.
\end{aligned} x 1 , … , x t Pr [ E ( 0 ) ] + i = 0 ∑ r − 1 z ( i ) Pr [ E ( i + 1 ) ] ≤ ( 1 + i = 0 ∑ r − 1 ( l ( 0 ) ⋯ l ( i ) ) 2 l ( i ) − 1 ) ϵ + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ⋅ i = 0 ∑ r − 1 ( l ( i ) − 1 ) < ( 1 + 2 1 ) ϵ + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ⋅ i = 0 ∑ r − 1 ( l ( i ) − 1 ) < 2 3 ϵ + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ⋅ i = 0 ∑ r − 1 l ( i ) . 综上所述,我们得到了当某些坏的事件 E ( i ) E^{(i)} E ( i ) 发生时,其概率严格小于
3 2 ϵ + 2 m + 1 ρ ⋅ ∣ D ( 0 ) ∣ + 1 ∣ F ∣ ⋅ ∑ i = 0 r − 1 l ( i ) = ϵ C , \frac{3}{2} \epsilon + \frac{2m + 1}{\sqrt{\rho}}\cdot \frac{|\mathcal{D}^{(0)}| + 1}{|\mathbb{F}|} \cdot \sum_{i=0}^{r-1} l^{(i)} = \epsilon_C, 2 3 ϵ + ρ 2 m + 1 ⋅ ∣ F ∣ ∣ D ( 0 ) ∣ + 1 ⋅ i = 0 ∑ r − 1 l ( i ) = ϵ C , 当没有坏的事件发生时,下面的式子成立
agree μ ( r ) ( f ( r ) , V ( r ) ) = E g ( r ) ∈ D ( r ) [ μ ( r ) ( g ( r ) ) ] (因为 f ( r ) ∈ V ( r ) ) ≤ max ( agree μ ( r − 1 ) ( f ( r − 1 ) , V ( r − 1 ) ) , ρ ( 1 + 1 / 2 m ) ) (根据事件 E ( i + 1 ) 的定义, 见式 (8.9) ) ≤ max ( agree μ ( r − 2 ) ( f ( r − 2 ) , V ( r − 2 ) ) , ρ ( 1 + 1 / 2 m ) ) ≤ … ≤ max ( agree μ ( 0 ) ( f ( 0 ) , V ( 0 ) ) , ρ ( 1 + 1 / 2 m ) ) = max ( α , ρ ( 1 + 1 / 2 m ) ) = α ( 0 ) ( ρ , m ) . \begin{aligned}
\text{agree}_{\mu^{(r)}} \left(f^{(r)}, V^{(r)}\right) & = \mathbb{E}_{g^{(r)} \in \mathcal{D}^{(r)}}\left[ \mu^{(r)}(g^{(r)}) \right] \\
& \color{blue}{\text{(因为 $f^{(r)} \in V^{(r)}$ )}} \\
& \le \max \left( \text{agree}_{\mu^{(r - 1)}} \left(f^{(r - 1)}, V^{(r - 1)}\right), \sqrt{\rho}(1 + 1/2m) \right) \\
& \color{blue}{\text{(根据事件 $E^{(i+1)}$ 的定义, 见式 (8.9) )}} \\
& \le \max \left( \text{agree}_{\mu^{(r - 2)}} \left(f^{(r - 2)}, V^{(r - 2)}\right), \sqrt{\rho}(1 + 1/2m) \right) \\
& \le \ldots \\
& \le \max \left( \text{agree}_{\mu^{(0)}} \left(f^{(0)}, V^{(0)}\right), \sqrt{\rho}(1 + 1/2m) \right) \\
& = \max \left( \alpha, \sqrt{\rho}(1 + 1/2m) \right) \\
& = \alpha^{(0)}(\rho, m)
\end{aligned}. agree μ ( r ) ( f ( r ) , V ( r ) ) = E g ( r ) ∈ D ( r ) [ μ ( r ) ( g ( r ) ) ] ( 因为 f ( r ) ∈ V ( r ) ) ≤ max ( agree μ ( r − 1 ) ( f ( r − 1 ) , V ( r − 1 ) ) , ρ ( 1 + 1/2 m ) ) ( 根据事件 E ( i + 1 ) 的定义, 见式 (8.9) ) ≤ max ( agree μ ( r − 2 ) ( f ( r − 2 ) , V ( r − 2 ) ) , ρ ( 1 + 1/2 m ) ) ≤ … ≤ max ( agree μ ( 0 ) ( f ( 0 ) , V ( 0 ) ) , ρ ( 1 + 1/2 m ) ) = max ( α , ρ ( 1 + 1/2 m ) ) = α ( 0 ) ( ρ , m ) . 至此,证得式 ( 8.7 ) (8.7) ( 8.7 ) 成立,由此得证引理 8.2。\Box
参考文献 ¶ [BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon Interactive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium on Automata, Languages and Programming (ICALP) , 2018. [BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science , pages 900–909, 2020. [RVW13] Guy N. Rothblum, Salil Vadhan, and Avi Wigderson. Interactive proofs of proximity: delegating computation in sublinear time. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing , pages 793–802. ACM, 2013.