笔记:Basefold 在 List Decoding 下的 Soundness 证明
在上一篇文章《Basefold 在 List Decoding 下的 Soundness 证明概览》中,梳理了 [H24] 论文中 soundness 证明的思路,本篇文章将沿着这个思路深入论文中的证明细节,主要是 [H24, Lemma 1] 的证明,其证明了 Basefold 协议在 commit 阶段的 soundness error。
Lemma 1 [H24, Lemma 1] (Soundness commit phase). Take a proximity parameter θ = 1 − ( 1 + 1 2 ⋅ m ) ⋅ ρ \theta=1-\left(1 + \frac{1}{2 \cdot m}\right) \cdot \sqrt{\rho} θ = 1 − ( 1 + 2 ⋅ m 1 ) ⋅ ρ , with m ≥ 3 m\geq3 m ≥ 3 . Suppose that a (possibly computationally unbounded) algorithm P ∗ P^* P ∗ succeeds the commitment phase with r ≥ 0 r\geq0 r ≥ 0 rounds with probability larger than
ε C = ε 0 + ε 1 + … + ε r , \varepsilon_C=\varepsilon_0+\varepsilon_1+\ldots+\varepsilon_r, ε C = ε 0 + ε 1 + … + ε r , where ε 0 = ε ( C i , M , θ ) \varepsilon_0=\varepsilon(\mathcal{C}_i,M,\theta) ε 0 = ε ( C i , M , θ ) is the soundness error from Theorem 3, and
ε i : = ε ( C i , 1 , B i , θ ) + 1 ∣ F ∣ , \varepsilon_i:=\varepsilon(\mathcal{C}_i,1,B_i,\theta)+\frac{1}{|F|}, ε i := ε ( C i , 1 , B i , θ ) + ∣ F ∣ 1 , with ε ( C i , 1 , B i , θ ) \varepsilon(\mathcal{C}_i,1,B_i,\theta) ε ( C i , 1 , B i , θ ) being the soundness error from Theorem 4, where B i = ∣ D ∣ ∣ D i ∣ = 2 i B_i=\frac{|D|}{|D_i|}=2^i B i = ∣ D i ∣ ∣ D ∣ = 2 i . Then ( g 0 , … , g M ) (g_0,\ldots,g_M) ( g 0 , … , g M ) belongs to R \mathcal{R} R .
引理中提到的 [H24, Theorem 3] 就是在 list decoding 下针对 subcode 的 correlated agreement 定理,而 [H24, Theorem 4] 就是 [H24, Theorem 3] 的 weighted 版本。
关系 R \mathcal{R} R 表示的含义是能得出 P ∗ P^* P ∗ 没有作恶,说明其承诺的多项式 ( g 0 , … , g M ) (g_{0}, \ldots, g_{M}) ( g 0 , … , g M ) 既离对应的编码空间距离不超过 θ ,同时也满足在查询点 ω ⃗ = ( ω 1 , … , ω n ) \vec{\omega} = (\omega_1, \ldots, \omega_n) ω = ( ω 1 , … , ω n ) 的值与承诺的值 v 0 , … , v M v_0, \ldots, v_M v 0 , … , v M 是一致的,即
R = { ∃ p 0 , … , p M ∈ F [ X ] < 2 n s.t. ( g 0 , … , g M ) : d ( ( g 0 , … , g M ) , ( p 0 , … , p M ) ) < θ ∧ ⋀ k = 0 M P k ( ω 1 , … , ω n ) = v k } . \mathcal{R}=\left\{\begin{array}{c}
\exists p_0, \ldots, p_M \in \mathscr{F}[X]^{<2^n} \text { s.t. } \\
\left(g_0, \ldots, g_M\right): d\left(\left(g_0, \ldots, g_M\right),\left(p_0, \ldots, p_M\right)\right)<\theta \\
\wedge \bigwedge_{k=0}^M P_k\left(\omega_1, \ldots, \omega_n\right)=v_k
\end{array}\right\}. R = ⎩ ⎨ ⎧ ∃ p 0 , … , p M ∈ F [ X ] < 2 n s.t. ( g 0 , … , g M ) : d ( ( g 0 , … , g M ) , ( p 0 , … , p M ) ) < θ ∧ ⋀ k = 0 M P k ( ω 1 , … , ω n ) = v k ⎭ ⎬ ⎫ . Lemma 1 说明的就是如果 P ∗ P^* P ∗ 在 commit 阶段成功的概率超过了 ε C \varepsilon_C ε C ,那么我们能相信 P ∗ P^* P ∗ 没有作弊,其声称的关系 R \mathcal{R} R 也是成立的。
在这里,还需要用数学语言去定义 P ∗ P^* P ∗ 在 commit 阶段的第 0 ≤ r ≤ n 0 \le r \le n 0 ≤ r ≤ n 轮能成功的含义,这就是 [H24] 论文中给出的 α -good 的概念。从协议本身理解,P ∗ P^* P ∗ 能成功,意味着 verifier 拿到 P ∗ P^* P ∗ 发送过来的 f 0 , Λ 0 , f 1 , Λ 1 , f 2 , Λ 2 , … , Λ r − 1 , f r f_0, \Lambda_0, f_1, \Lambda_1, f_2, \Lambda_2, \ldots, \Lambda_{r-1}, f_r f 0 , Λ 0 , f 1 , Λ 1 , f 2 , Λ 2 , … , Λ r − 1 , f r ,然后进行检查,一是进行 sumcheck 的检查,另一个是在 D 0 D_0 D 0 中随机选取 x x x ,FRI 的折叠是正确的。首先这里的参数 α = 1 − θ ∈ ( 0 , 1 ) \alpha = 1 - \theta \in (0,1) α = 1 − θ ∈ ( 0 , 1 ) ,即
α = ( 1 + 1 2 ⋅ m ) ⋅ ρ \alpha = \left(1 + \frac{1}{2 \cdot m}\right) \cdot \sqrt{\rho} α = ( 1 + 2 ⋅ m 1 ) ⋅ ρ 用 F i \mathcal{F}_i F i 表示和 Reed-Solomon 编码 C i = R S 2 n − i [ F , D i ] \mathcal{C}_i = \mathrm{RS}_{2^{n-i}}[F, D_i] C i = RS 2 n − i [ F , D i ] 相对应的多项式空间,其中 D i D_i D i 就是用映射 π 对 D D D 作用 i i i 次,即 D i = π i ( D ) , i = 0 , … , n D_i = \pi^i(D), i = 0, \ldots, n D i = π i ( D ) , i = 0 , … , n 。因此与 C i ′ ⊆ C i \mathcal{C}_i' \subseteq \mathcal{C}_i C i ′ ⊆ C i 相对应的多项式子空间定义为
F i ′ = { p ( X ) ∈ F i : P ( ω i + 1 , … , ω n ) = 0 } . \mathcal{F}_i' = \left\{p(X) \in \mathcal{F}_i: P(\omega_{i + 1}, \ldots, \omega_n) = 0 \right\}. F i ′ = { p ( X ) ∈ F i : P ( ω i + 1 , … , ω n ) = 0 } . sumcheck 检查正确。意味着存在 p r ( X ) ∈ F r p_r(X) \in \mathcal{F}_r p r ( X ) ∈ F r ,其对应的多元多项式为 P r P_r P r 满足
L ( ( ω 1 , … , ω r ) , ( λ 1 , … , λ r ) ) ⋅ P r ( ω 1 , … , ω n ) = q r − 1 ( λ r ) L((\omega_1, \ldots, \omega_r), (\lambda_1, \ldots, \lambda_r)) \cdot P_r(\omega_1, \ldots, \omega_n) = q_{r-1}(\lambda_r) L (( ω 1 , … , ω r ) , ( λ 1 , … , λ r )) ⋅ P r ( ω 1 , … , ω n ) = q r − 1 ( λ r ) 根据 q i ( X ) q_i(X) q i ( X ) 与 Λ i ( X ) \Lambda_i(X) Λ i ( X ) 之间的关系,可以得到 P r P_r P r 需要满足
L ( ( ω 1 , … , ω r ) , ( λ 1 , … , λ r ) ) ⋅ P r ( ω r + 1 , … , ω n ) = q r − 1 ( λ r ) = L ( ( ω 1 , … , ω r ) , ( λ 1 , … , λ r ) ) ⋅ Λ r − 1 ( λ r ) (1) \begin{aligned}
L((\omega_1, \ldots, \omega_r), (\lambda_1, \ldots, \lambda_r)) \cdot & P_r(\omega_{r + 1}, \ldots, \omega_n) = q_{r-1}(\lambda_r) \\
& = L((\omega_1, \ldots, \omega_r), (\lambda_1, \ldots, \lambda_r)) \cdot \Lambda_{r - 1}(\lambda_r)
\end{aligned} \tag{1} L (( ω 1 , … , ω r ) , ( λ 1 , … , λ r )) ⋅ P r ( ω r + 1 , … , ω n ) = q r − 1 ( λ r ) = L (( ω 1 , … , ω r ) , ( λ 1 , … , λ r )) ⋅ Λ r − 1 ( λ r ) ( 1 ) 折叠正确。需要满足
∣ { x ∈ D 0 : ( f 0 , … , f r ) satisfy all folding checks along x ∧ f r ( π r ( x ) ) = p r ( π r ( x ) ) } ∣ ≥ α ⋅ ∣ D 0 ∣ (2) \left| \left\{ x \in D_0 : \quad \begin{array}{c}
(f_0, \ldots, f_r) \text{ satisfy all folding checks along } x \\
\wedge f_r(\pi^r(x)) = p_r(\pi^r(x))
\end{array}\right\}\right| \ge \alpha \cdot |D_0| \tag{2} ∣ ∣ { x ∈ D 0 : ( f 0 , … , f r ) satisfy all folding checks along x ∧ f r ( π r ( x )) = p r ( π r ( x )) } ∣ ∣ ≥ α ⋅ ∣ D 0 ∣ ( 2 ) 这里只有当在 D 0 D_0 D 0 中满足 folding check 的 x x x 的比例大于 α ,经过 π r \pi^r π r 映射,到最后 verifier 才会通过。
当满足 1 和 2 两个条件时,就说这样的 ( f 0 , Λ 0 , f 1 , Λ 1 , f 2 , Λ 2 , … , Λ r − 1 , f r ) (f_0, \Lambda_0, f_1, \Lambda_1, f_2, \Lambda_2, \ldots, \Lambda_{r-1}, f_r) ( f 0 , Λ 0 , f 1 , Λ 1 , f 2 , Λ 2 , … , Λ r − 1 , f r ) 对于 ( λ 0 , … , λ r ) (\lambda_0, \ldots, \lambda_r) ( λ 0 , … , λ r ) 来说 α -good 的。
Lemma 1 证明 ¶ Lemma 1 的证明采用的是数学归纳法,先证明当 r = 0 r = 0 r = 0 时结论是成立的,这里用到了 [H24, Therorem 3]。接着假设 Lemma 1 在 0 ≤ r < n 0 \le r < n 0 ≤ r < n 时成立,证明 Lemma 1 在 r + 1 r + 1 r + 1 时结论也成立,在这个过程中就用到了带权重的 [H24, Theorem 4] ,其证明思路与上篇文章介绍的思路类似。例如在第 r + 1 r + 1 r + 1 轮,用随机数 λ r + 1 \lambda_{r + 1} λ r + 1 折叠之后得到 f r + 1 f_{r + 1} f r + 1 满足的条件入手,其离对应的编码空间距离比较近,并满足 sumcheck 约束,先推导出对应的 f r + 1 ′ f_{r + 1}' f r + 1 ′ 满足一些条件,这样就能使用针对 subcode 的 correlated agreement 定理了。应用定理的结论,进而得到在折叠之前的 f r , 0 f_{r,0} f r , 0 与 f r , 1 f_{r,1} f r , 1 满足的性质,以此再得出 f r f_r f r 满足的性质。此时应用归纳假设,能得到在第 r r r 轮满足引理的条件,从而得出在第 r r r 轮的结论成立,也就证明了在第 r + 1 r + 1 r + 1 轮引理成立。
证明:首先证明当 r = 0 r = 0 r = 0 时引理是成立的。已知的条件是 P ∗ P^* P ∗ 在 commit 阶段成功的概率大于 ε ( C 0 , M , θ ) \varepsilon(\mathcal{C}_0,M,\theta) ε ( C 0 , M , θ ) ,想证明得到的结论是 ( g 1 , … , g M ) ∈ R (g_1, \ldots, g_M) \in \mathcal{R} ( g 1 , … , g M ) ∈ R 。根据条件以及 α -good 的定义,可以得到以大于 ε ( C 0 , M , θ ) \varepsilon(\mathcal{C}_0,M,\theta) ε ( C 0 , M , θ ) 的概率 P ∗ P^* P ∗ 提供的 f 0 f_0 f 0 对 λ 0 \lambda_0 λ 0 来说是 α -good 的,那么对于考虑折叠之前的多项式 g k ′ = g k − v k g_k' = g_k - v_k g k ′ = g k − v k ,距离对应的 subcode C 0 ′ ⊆ C 0 \mathcal{C}_0' \subseteq \mathcal{C}_0 C 0 ′ ⊆ C 0 不超过 θ (也就说明一致的地方大于 α )的概率为
Pr [ λ 0 : ∃ p 0 ′ ∈ F 0 ′ s.t. a g r e e ( ∑ k = 0 M g k ′ ⋅ λ 0 k , p 0 ′ ( X ) ) ≥ α ] > ε ( C 0 , M , θ ) \Pr \left[ \lambda_0: \exists p_0' \in \mathcal{F}_0' \text{ s.t. } \mathrm{agree} \left( \sum_{k = 0}^{M} g_k' \cdot \lambda_0^k, p_0'(X) \right) \ge \alpha \right] > \varepsilon(\mathcal{C}_0,M,\theta) Pr [ λ 0 : ∃ p 0 ′ ∈ F 0 ′ s.t. agree ( k = 0 ∑ M g k ′ ⋅ λ 0 k , p 0 ′ ( X ) ) ≥ α ] > ε ( C 0 , M , θ ) 这里考虑的是多项式 g k ′ = g k − v k g_k' = g_k - v_k g k ′ = g k − v k 而不是 g k g_k g k 的目的是,能让我们的分析进入线性子码 C 0 ′ \mathcal{C}_0' C 0 ′ 的范围内,这样我们就能用 [H24, Theorem 3] ,得到存在多项式
p 0 ′ ( X ) , … , p M ′ ( X ) ∈ F 0 ′ p_0'(X), \ldots, p_M'(X) \in \mathcal{F}_0' p 0 ′ ( X ) , … , p M ′ ( X ) ∈ F 0 ′ 以及存在集合 D 0 ′ ⊆ D D_0' \subseteq D D 0 ′ ⊆ D ,满足
∣ D 0 ′ ∣ / ∣ D ∣ ≥ α |D_0'|/|D| \ge \alpha ∣ D 0 ′ ∣/∣ D ∣ ≥ α p k ′ ( X ) ∣ D 0 ′ = g k ′ ( X ) ∣ D 0 ′ p_k'(X)|_{D_0'} = g_k'(X)|_{D_0'} p k ′ ( X ) ∣ D 0 ′ = g k ′ ( X ) ∣ D 0 ′ 现在找到了多项式 p 0 ′ ( X ) , … , p M ′ ( X ) p_0'(X), \ldots, p_M'(X) p 0 ′ ( X ) , … , p M ′ ( X ) ,那么对于多项式
p 0 ′ ( X ) + v 0 , … , p M ′ ( X ) + v M ∈ F 0 p_0'(X) + v_0, \ldots, p_M'(X) + v_M \in \mathcal{F}_0 p 0 ′ ( X ) + v 0 , … , p M ′ ( X ) + v M ∈ F 0 就满足
( p k ′ ( X ) + v k ) ∣ D 0 ′ = ( g k ′ ( X ) + v k ) ∣ D 0 ′ = g k ( X ) ∣ D 0 ′ 0 ≤ k ≤ M (p_k'(X) + v_k)|_{D_0'} = (g_k'(X) + v_k)|_{D_0'} = g_k(X)|_{D_0'} \quad 0 \le k \le M ( p k ′ ( X ) + v k ) ∣ D 0 ′ = ( g k ′ ( X ) + v k ) ∣ D 0 ′ = g k ( X ) ∣ D 0 ′ 0 ≤ k ≤ M p 0 ′ ( X ) + v 0 p_0'(X) + v_0 p 0 ′ ( X ) + v 0 对应的多元线性多项式 P k ∈ F [ X 1 , … , X n ] P_k \in F[X_1, \ldots, X_n] P k ∈ F [ X 1 , … , X n ] 也满足 P k ( ω ⃗ ) = v k P_k(\vec{\omega}) = v_k P k ( ω ) = v k ,因此 ( g 1 , … , g M ) ∈ R (g_1, \ldots, g_M) \in \mathcal{R} ( g 1 , … , g M ) ∈ R 。
现在假设引理在 0 ≤ r < n 0 \le r < n 0 ≤ r < n 时是成立的,想证明在 r + 1 r + 1 r + 1 时引理依然成立。根据引理的条件,在第 r + 1 r + 1 r + 1 轮,P ∗ P^* P ∗ 在 commit 阶段成功的概率超过 ( ε 0 + ε 1 + … + ε r ) + ε r + 1 (\varepsilon_0 + \varepsilon_1 + \ldots + \varepsilon_r) + \varepsilon_{r + 1} ( ε 0 + ε 1 + … + ε r ) + ε r + 1 。记 t r r = ( λ 0 , f 0 , Λ 0 , … , λ r , f r , Λ r ) \mathrm{tr}_r = (\lambda_0, f_0, \Lambda_0, \ldots, \lambda_r, f_r, \Lambda_r) tr r = ( λ 0 , f 0 , Λ 0 , … , λ r , f r , Λ r ) 组成的集合为 T \mathfrak{T} T ,因此在
Pr [ T ] > ε 0 + … + ε r \operatorname{Pr}[\mathfrak{T}]>\varepsilon_0+\ldots+\varepsilon_r Pr [ T ] > ε 0 + … + ε r 的条件下,P ∗ P^* P ∗ 成功的概率大于 ε r + 1 \varepsilon_{r + 1} ε r + 1 ,即
Pr [ λ r + 1 : ∃ f r + 1 s.t. ( λ 0 , f 0 , Λ 0 , … , λ r , f r , Λ r , f r + 1 ) is α -good for ( λ 0 , … , λ r + 1 ) ] > ε r + 1 \Pr \left[ \lambda_{r+1}:
\begin{array}{c}
\exists f_{r + 1} \text{ s.t. } (\lambda_0, f_0, \Lambda_0, \ldots, \lambda_r, f_r, \Lambda_r, f_{r + 1}) \\
\text{is $\alpha$-good for } (\lambda_0, \ldots, \lambda_{r + 1})
\end{array}
\right] > \varepsilon_{r + 1} Pr [ λ r + 1 : ∃ f r + 1 s.t. ( λ 0 , f 0 , Λ 0 , … , λ r , f r , Λ r , f r + 1 ) is α -good for ( λ 0 , … , λ r + 1 ) ] > ε r + 1 由 α - good 的定义可以得到,对于满足 α -good 的 λ r + 1 \lambda_{r + 1} λ r + 1 ,存在一个满足 sumcheck 约束的多项式 p r + 1 ∈ F r + 1 p_{r + 1} \in \mathcal{F}_{r + 1} p r + 1 ∈ F r + 1 ,使得
a g r e e ν r ( ( 1 − λ r + 1 ) ⋅ f r , 0 + λ r + 1 ⋅ f r , 1 , p r + 1 ) ≥ α (3) \mathrm{agree}_{\nu_r}((1 - \lambda_{r + 1}) \cdot f_{r,0} + \lambda_{r + 1} \cdot f_{r,1}, p_{r + 1}) \ge \alpha \tag{3} agree ν r (( 1 − λ r + 1 ) ⋅ f r , 0 + λ r + 1 ⋅ f r , 1 , p r + 1 ) ≥ α ( 3 ) 这里的 ν r \nu_r ν r 是一个子概率测度,其 density 函数定义为,对 y ∈ D r + 1 y \in D_{r + 1} y ∈ D r + 1 有
δ r ( y ) : = ∣ { x ∈ π − ( r + 1 ) ( y ) : ( f 0 , … , f r ) satisfies all folding checks along x } ∣ ∣ π − ( r + 1 ) ( y ) ∣ \delta_r(y) : = \frac{|\{x \in \pi^{-(r + 1)}(y): (f_0, \ldots, f_r) \text{ satisfies all folding checks along } x \}|}{|\pi^{-(r+1)}(y)|} δ r ( y ) := ∣ π − ( r + 1 ) ( y ) ∣ ∣ { x ∈ π − ( r + 1 ) ( y ) : ( f 0 , … , f r ) satisfies all folding checks along x } ∣ 这里解释下式 ( 3 ) (3) ( 3 ) 表示的实质上就是 α -good 定义中的式 ( 2 ) (2) ( 2 ) 。根据 a g r e e \mathrm{agree} agree 函数的定义,式 ( 3 ) (3) ( 3 ) 等价于
ν r ( { y ∈ D r + 1 : ( ( 1 − λ r + 1 ) ⋅ f r , 0 + λ r + 1 ⋅ f r , 1 ) ( y ) = p r + 1 ( y ) } ) ∣ D r + 1 ∣ ≥ α \frac{\nu_r(\{ y \in D_{r + 1}: ((1 - \lambda_{r + 1}) \cdot f_{r,0} + \lambda_{r + 1} \cdot f_{r,1})(y) = p_{r + 1}(y)\})}{|D_{r + 1}|} \ge \alpha ∣ D r + 1 ∣ ν r ({ y ∈ D r + 1 : (( 1 − λ r + 1 ) ⋅ f r , 0 + λ r + 1 ⋅ f r , 1 ) ( y ) = p r + 1 ( y )}) ≥ α 先将在 D r + 1 D_{r + 1} D r + 1 中满足折叠关系的 y y y 组成一个集合,记为 S r + 1 S_{r + 1} S r + 1 ,再用 ν r \nu_r ν r 函数对这个集合进行计算。
ν r ( S r + 1 ) = ∑ y ∈ S r + 1 δ r ( y ) = ∑ y ∈ S r + 1 ∣ { x ∈ π − ( r + 1 ) ( y ) : ( f 0 , … , f r ) satisfies all folding checks along x } ∣ ∣ π − ( r + 1 ) ( y ) ∣ = ∑ y ∈ S r + 1 ∣ { x ∈ π − ( r + 1 ) ( y ) : ( f 0 , … , f r ) satisfies all folding checks along x } ∣ 2 r + 1 : = ∑ y ∈ S r + 1 ∣ S y , 0 ∣ 2 r + 1 = ∑ y ∈ S r + 1 ∣ S y , 0 ∣ 2 r + 1 \begin{aligned}
\nu_r (S_{r + 1}) & = \sum_{y \in S_{r + 1}} \delta_r(y) \\
& = \sum_{y \in S_{r + 1}} \frac{|\{x \in \pi^{-(r + 1)}(y): (f_0, \ldots, f_r) \text{ satisfies all folding checks along } x \}|}{|\pi^{-(r+1)}(y)|} \\
& = \sum_{y \in S_{r + 1}} \frac{|\{x \in \pi^{-(r + 1)}(y): (f_0, \ldots, f_r) \text{ satisfies all folding checks along } x \}|}{2^{r + 1}} \\
& := \sum_{y \in S_{r + 1}} \frac{|S_{y,0}|}{2^{r + 1}} \\
& = \frac{\sum_{y \in S_{r + 1}} |S_{y,0}|}{2^{r + 1}}
\end{aligned} ν r ( S r + 1 ) = y ∈ S r + 1 ∑ δ r ( y ) = y ∈ S r + 1 ∑ ∣ π − ( r + 1 ) ( y ) ∣ ∣ { x ∈ π − ( r + 1 ) ( y ) : ( f 0 , … , f r ) satisfies all folding checks along x } ∣ = y ∈ S r + 1 ∑ 2 r + 1 ∣ { x ∈ π − ( r + 1 ) ( y ) : ( f 0 , … , f r ) satisfies all folding checks along x } ∣ := y ∈ S r + 1 ∑ 2 r + 1 ∣ S y , 0 ∣ = 2 r + 1 ∑ y ∈ S r + 1 ∣ S y , 0 ∣ 因此
a g r e e ν r ( ( 1 − λ r + 1 ) ⋅ f r , 0 + λ r + 1 ⋅ f r , 1 , p r + 1 ) = ν r ( S r + 1 ) ∣ D r + 1 ∣ = ∑ y ∈ S r + 1 ∣ S y , 0 ∣ 2 r + 1 ⋅ ∣ D r + 1 ∣ = ∑ y ∈ S r + 1 ∣ S y , 0 ∣ ∣ D 0 ∣ \begin{aligned}
\mathrm{agree}_{\nu_r}((1 - \lambda_{r + 1}) \cdot f_{r,0} + \lambda_{r + 1} \cdot f_{r,1}, p_{r + 1}) & = \frac{\nu_r(S_{r + 1})}{|D_{r + 1}|} \\
& = \frac{\sum_{y \in S_{r + 1}} |S_{y,0}|}{2^{r + 1} \cdot |D_{r + 1}|} \\
& = \frac{\sum_{y \in S_{r + 1}} |S_{y,0}|}{|D_{0}|}
\end{aligned} agree ν r (( 1 − λ r + 1 ) ⋅ f r , 0 + λ r + 1 ⋅ f r , 1 , p r + 1 ) = ∣ D r + 1 ∣ ν r ( S r + 1 ) = 2 r + 1 ⋅ ∣ D r + 1 ∣ ∑ y ∈ S r + 1 ∣ S y , 0 ∣ = ∣ D 0 ∣ ∑ y ∈ S r + 1 ∣ S y , 0 ∣ 上式中分子 ∑ y ∈ S r + 1 ∣ S y , 0 ∣ \sum_{y \in S_{r + 1}} |S_{y,0}| ∑ y ∈ S r + 1 ∣ S y , 0 ∣ 表示的含义正是在 D 0 D_0 D 0 中满足第 r + 1 r + 1 r + 1 次折叠正确,同时 ( f 0 , … , f r ) (f_0, \ldots, f_r) ( f 0 , … , f r ) 折叠检查也是正确的。( 3 ) (3) ( 3 ) 式就变为
∑ y ∈ S r + 1 ∣ S y , 0 ∣ ≥ α ⋅ ∣ D 0 ∣ \sum_{y \in S_{r + 1}} |S_{y,0}| \ge \alpha \cdot |D_{0}| y ∈ S r + 1 ∑ ∣ S y , 0 ∣ ≥ α ⋅ ∣ D 0 ∣ 这与 α -good 定义中式 ( 2 ) (2) ( 2 ) 是完全一致的。接下来根据在上篇文章中介绍的 soundness 证明思路,由于 p r + 1 ( X ) p_{r+1}(X) p r + 1 ( X ) 对应的多元线性多项式 P r + 1 P_{r+1} P r + 1 满足 sumcheck 约束,因此满足
L ( ( ω 1 , … , ω r + 1 ) , ( λ 1 , … , λ r + 1 ) ) ⋅ P r + 1 ( ω r + 2 , … , ω n ) = q r ( λ r + 1 ) = L ( ( ω 1 , … , ω r + 1 ) , ( λ 1 , … , λ r + 1 ) ) ⋅ Λ r ( λ r + 1 ) \begin{aligned}
L((\omega_1, \ldots, \omega_{r+1}), (\lambda_1, \ldots, \lambda_{r + 1})) \cdot & P_{r+1}(\omega_{r + 2}, \ldots, \omega_n) = q_{r}(\lambda_{r + 1}) \\
& = L((\omega_1, \ldots, \omega_{r + 1}), (\lambda_1, \ldots, \lambda_{r + 1})) \cdot \Lambda_{r}(\lambda_{r + 1})
\end{aligned} L (( ω 1 , … , ω r + 1 ) , ( λ 1 , … , λ r + 1 )) ⋅ P r + 1 ( ω r + 2 , … , ω n ) = q r ( λ r + 1 ) = L (( ω 1 , … , ω r + 1 ) , ( λ 1 , … , λ r + 1 )) ⋅ Λ r ( λ r + 1 ) 推出
L ( ( ω 1 , … , ω r ) , ( λ 1 , … , λ r ) ) ⋅ L ( ω r + 1 , λ r + 1 ) ⋅ P r + 1 ( ω r + 2 , … , ω n ) = L ( ( ω 1 , … , ω r ) , ( λ 1 , … , λ r ) ) ⋅ L ( ω r + 1 , λ r + 1 ) ⋅ Λ r ( λ r + 1 ) \begin{aligned}
L((\omega_1, \ldots, \omega_{r}), (\lambda_1, \ldots, \lambda_{r})) \cdot L(\omega_{r+1}, \lambda_{r + 1}) \cdot & P_{r+1}(\omega_{r + 2}, \ldots, \omega_n) \\
& = L((\omega_1, \ldots, \omega_{r}), (\lambda_1, \ldots, \lambda_{r})) \cdot L(\omega_{r+1}, \lambda_{r + 1}) \cdot \Lambda_{r}(\lambda_{r + 1})
\end{aligned} L (( ω 1 , … , ω r ) , ( λ 1 , … , λ r )) ⋅ L ( ω r + 1 , λ r + 1 ) ⋅ P r + 1 ( ω r + 2 , … , ω n ) = L (( ω 1 , … , ω r ) , ( λ 1 , … , λ r )) ⋅ L ( ω r + 1 , λ r + 1 ) ⋅ Λ r ( λ r + 1 ) 对于 λ r + 1 \lambda_{r + 1} λ r + 1 的选择,有 1 / ∣ F ∣ 1/|F| 1/∣ F ∣ 的概率使得 L ( ω r + 1 , λ r + 1 ) = 0 L(\omega_{r+1}, \lambda_{r + 1}) = 0 L ( ω r + 1 , λ r + 1 ) = 0 ,得出上式成立。因此除了 1 / ∣ F ∣ 1/|F| 1/∣ F ∣ 的概率,依然有超过
ε r + 1 − 1 ∣ F ∣ = ε ( C i + 1 , 1 , B r + 1 , θ ) \varepsilon_{r + 1} - \frac{1}{|F|} = \varepsilon(\mathcal{C}_{i + 1}, 1, B_{r + 1}, \theta) ε r + 1 − ∣ F ∣ 1 = ε ( C i + 1 , 1 , B r + 1 , θ ) 的概率,使得多项式 p r + 1 ′ = p r + 1 − Λ r ( λ r + 1 ) ∈ F r + 1 ′ p_{r+1}' = p_{r + 1} - \Lambda_r(\lambda_{r + 1}) \in \mathcal{F}_{r + 1}' p r + 1 ′ = p r + 1 − Λ r ( λ r + 1 ) ∈ F r + 1 ′ ,以及 f r , 0 ′ = f r , 0 − Λ r ( 0 ) f_{r,0}' = f_{r,0} - \Lambda_r(0) f r , 0 ′ = f r , 0 − Λ r ( 0 ) ,f r , 1 ′ = f r , 1 − Λ r ( 1 ) f_{r,1}' = f_{r,1} - \Lambda_r(1) f r , 1 ′ = f r , 1 − Λ r ( 1 ) 满足
a g r e e ν r ( ( 1 − λ r + 1 ) ⋅ f r , 0 ′ + λ r + 1 ⋅ f r , 1 ′ , p r + 1 ′ ) ≥ α \mathrm{agree}_{\nu_r}((1 - \lambda_{r + 1}) \cdot f_{r,0}' + \lambda_{r + 1} \cdot f_{r,1}', p_{r + 1}') \ge \alpha agree ν r (( 1 − λ r + 1 ) ⋅ f r , 0 ′ + λ r + 1 ⋅ f r , 1 ′ , p r + 1 ′ ) ≥ α 上面满足的条件可以写为
Pr [ λ r + 1 : ∃ p r + 1 ′ ∈ F r + 1 ′ s.t. a g r e e ν r ( ( 1 − λ r + 1 ) ⋅ f r , 0 ′ + λ r + 1 ⋅ f r , 1 ′ , p r + 1 ′ ) ≥ α ] > ε ( C i + 1 , 1 , B r + 1 , θ ) \begin{aligned}
\Pr \left[ \lambda_{r+1}: \quad
\begin{array}{c}
\exists p_{r + 1}' \in \mathcal{F}_{r+1}' \text{ s.t. } \\
\mathrm{agree}_{\nu_r}((1 - \lambda_{r + 1}) \cdot f_{r,0}' + \lambda_{r + 1} \cdot f_{r,1}', p_{r + 1}') \ge \alpha
\end{array}
\right] > \varepsilon(\mathcal{C}_{i + 1}, 1, B_{r + 1}, \theta)
\end{aligned} Pr [ λ r + 1 : ∃ p r + 1 ′ ∈ F r + 1 ′ s.t. agree ν r (( 1 − λ r + 1 ) ⋅ f r , 0 ′ + λ r + 1 ⋅ f r , 1 ′ , p r + 1 ′ ) ≥ α ] > ε ( C i + 1 , 1 , B r + 1 , θ ) 这也就满足了 [H24, Theorem 4] 带权重的 correlated agreement 定理的条件,因此可以得到存在多项式 p r , 0 ′ ( X ) , p r , 1 ′ ( X ) ∈ F r + 1 ′ p_{r,0}'(X), p_{r,1}'(X) \in \mathcal{F}_{r+1}' p r , 0 ′ ( X ) , p r , 1 ′ ( X ) ∈ F r + 1 ′ ,以及集合 A r + 1 ⊆ D r + 1 A_{r + 1} \subseteq D_{r+1} A r + 1 ⊆ D r + 1 满足:
ν r ( A r + 1 ) ≥ 1 − θ \nu_r(A_{r+1}) \ge 1 - \theta ν r ( A r + 1 ) ≥ 1 − θ p r , 0 ′ ( X ) ∣ A r + 1 = f r , 0 ′ ( X ) ∣ A r + 1 p_{r,0}'(X)|_{A_{r+1}} = f_{r,0}'(X)|_{A_{r+1}} p r , 0 ′ ( X ) ∣ A r + 1 = f r , 0 ′ ( X ) ∣ A r + 1 , p r , 1 ′ ( X ) ∣ A r + 1 = f r , 1 ′ ( X ) ∣ A r + 1 p_{r,1}'(X)|_{A_{r+1}} = f_{r,1}'(X)|_{A_{r+1}} p r , 1 ′ ( X ) ∣ A r + 1 = f r , 1 ′ ( X ) ∣ A r + 1 现在已经找到了多项式 p r , 0 ′ ( X ) , p r , 1 ′ ( X ) p_{r,0}'(X), p_{r,1}'(X) p r , 0 ′ ( X ) , p r , 1 ′ ( X ) ,因此存在多项式
p r , 0 ( X ) = p r , 0 ′ ( X ) + Λ r ( 0 ) , p r , 1 ( X ) = p r , 1 ′ ( X ) + Λ r ( 1 ) ∈ F r + 1 p_{r,0}(X) = p_{r,0}'(X) + \Lambda_r(0), \quad p_{r,1}(X) = p_{r,1}'(X) + \Lambda_r(1) \in \mathcal{F}_{r+1} p r , 0 ( X ) = p r , 0 ′ ( X ) + Λ r ( 0 ) , p r , 1 ( X ) = p r , 1 ′ ( X ) + Λ r ( 1 ) ∈ F r + 1 而
f r , 0 ( X ) = f r , 0 ′ ( X ) + Λ r ( 0 ) , f r , 1 ( X ) = f r , 1 ′ ( X ) + Λ r ( 1 ) f_{r,0}(X) = f_{r,0}'(X) + \Lambda_r(0), \quad f_{r,1}(X) = f_{r,1}'(X) + \Lambda_r(1) f r , 0 ( X ) = f r , 0 ′ ( X ) + Λ r ( 0 ) , f r , 1 ( X ) = f r , 1 ′ ( X ) + Λ r ( 1 ) 根据 correlated agreement 给出的结论 2 ,可以得到
p r , 0 ( X ) ∣ A r + 1 = f r , 0 ( X ) ∣ A r + 1 , p r , 1 ( X ) ∣ A r + 1 = f r , 1 ( X ) ∣ A r + 1 p_{r,0}(X)|_{A_{r+1}} = f_{r,0}(X)|_{A_{r+1}}, \quad p_{r,1}(X)|_{A_{r+1}} = f_{r,1}(X)|_{A_{r+1}} p r , 0 ( X ) ∣ A r + 1 = f r , 0 ( X ) ∣ A r + 1 , p r , 1 ( X ) ∣ A r + 1 = f r , 1 ( X ) ∣ A r + 1 对于 p r , 0 ( X ) , p r , 1 ( X ) p_{r,0}(X), p_{r,1}(X) p r , 0 ( X ) , p r , 1 ( X ) 相对应的多元线性多项式 P r , 0 P_{r,0} P r , 0 以及 P r , 1 P_{r,1} P r , 1 ,根据 F r ′ \mathcal{F}_{r}' F r ′ 的定义,可以得到
P r , 0 ( ω r + 2 , … , ω n ) = Λ r ( 0 ) P r , 1 ( ω r + 2 , … , ω n ) = Λ r ( 1 ) \begin{aligned}
P_{r,0}(\omega_{r+2}, \ldots, \omega_{n}) = \Lambda_r(0) \\
P_{r,1}(\omega_{r+2}, \ldots, \omega_{n}) = \Lambda_r(1)
\end{aligned} P r , 0 ( ω r + 2 , … , ω n ) = Λ r ( 0 ) P r , 1 ( ω r + 2 , … , ω n ) = Λ r ( 1 ) 将集合 A r + 1 A_{r+1} A r + 1 中的点通过 π 的逆映射得到 A r = π − 1 ( A r + 1 ) ⊆ D r A_r = \pi^{-1}(A_{r+1}) \subseteq D_r A r = π − 1 ( A r + 1 ) ⊆ D r ,在这些点一定满足 f r f_r f r 和
p r ( X ) = p r , 0 ( X 2 ) + X ⋅ p r , 1 ( X 2 ) ∈ F r p_r(X) = p_{r,0}(X^2) + X \cdot p_{r,1}(X^2) \in \mathcal{F}_{r} p r ( X ) = p r , 0 ( X 2 ) + X ⋅ p r , 1 ( X 2 ) ∈ F r 是一致的。对于与 p r ( X ) p_r(X) p r ( X ) 相对应的多元线性多项式 P r P_r P r ,其满足
P r ( ω r + 1 , ω r + 2 , … , ω n ) = ( 1 − ω r + 1 ) ⋅ P r , 0 ( ω r + 2 , … , ω n ) + ω r + 1 ⋅ P r , 1 ( ω r + 2 , … , ω n ) = ( 1 − ω r + 1 ) ⋅ Λ r ( 0 ) + ω r + 1 ⋅ Λ r ( 1 ) = L ( ω r + 1 , 0 ) ⋅ Λ r ( 0 ) + L ( ω r + 1 , 1 ) ⋅ Λ r ( 1 ) \begin{aligned}
P_r(\omega_{r + 1}, \omega_{r + 2}, \ldots, \omega_n) & = (1 - \omega_{r + 1}) \cdot P_{r,0}(\omega_{r+2}, \ldots, \omega_{n}) + \omega_{r + 1} \cdot P_{r,1}(\omega_{r+2}, \ldots, \omega_{n}) \\
& = (1 - \omega_{r + 1}) \cdot \Lambda_r(0) + \omega_{r + 1} \cdot \Lambda_r(1) \\
& = L(\omega_{r + 1}, 0) \cdot \Lambda_r(0) + L(\omega_{r + 1}, 1) \cdot \Lambda_r(1)
\end{aligned} P r ( ω r + 1 , ω r + 2 , … , ω n ) = ( 1 − ω r + 1 ) ⋅ P r , 0 ( ω r + 2 , … , ω n ) + ω r + 1 ⋅ P r , 1 ( ω r + 2 , … , ω n ) = ( 1 − ω r + 1 ) ⋅ Λ r ( 0 ) + ω r + 1 ⋅ Λ r ( 1 ) = L ( ω r + 1 , 0 ) ⋅ Λ r ( 0 ) + L ( ω r + 1 , 1 ) ⋅ Λ r ( 1 ) 由此可以得到在第 r r r 轮的 sumcheck 是满足的:
L ( ω 1 , … , ω r , λ 1 , … , λ r ) ⋅ P r ( ω r + 1 , ω r + 2 , … , ω n ) = L ( ω 1 , … , ω r , λ 1 , … , λ r ) ⋅ L ( ω r + 1 , 0 ) ⋅ Λ r ( 0 ) + L ( ω 1 , … , ω r , λ 1 , … , λ r ) ⋅ L ( ω r + 1 , 1 ) ⋅ Λ r ( 1 ) = q r ( 0 ) + q r ( 1 ) = q r − 1 ( λ r ) \begin{aligned}
L(\omega_{1}, \ldots, \omega_{r}, \lambda_1, \ldots, \lambda_r) &\cdot P_r(\omega_{r + 1}, \omega_{r + 2}, \ldots, \omega_n) \\
& = L(\omega_{1}, \ldots, \omega_{r}, \lambda_1, \ldots, \lambda_r) \cdot L(\omega_{r + 1}, 0) \cdot \Lambda_r(0) \\
& \quad + L(\omega_{1}, \ldots, \omega_{r}, \lambda_1, \ldots, \lambda_r) \cdot L(\omega_{r + 1}, 1) \cdot \Lambda_r(1) \\
& = q_r(0) + q_r(1) \\
& = q_{r - 1}(\lambda_r)
\end{aligned} L ( ω 1 , … , ω r , λ 1 , … , λ r ) ⋅ P r ( ω r + 1 , ω r + 2 , … , ω n ) = L ( ω 1 , … , ω r , λ 1 , … , λ r ) ⋅ L ( ω r + 1 , 0 ) ⋅ Λ r ( 0 ) + L ( ω 1 , … , ω r , λ 1 , … , λ r ) ⋅ L ( ω r + 1 , 1 ) ⋅ Λ r ( 1 ) = q r ( 0 ) + q r ( 1 ) = q r − 1 ( λ r ) 现在得到了在第 r r r 轮的 sumcheck 是满足的,接下来需要考虑折叠关系是否满足。考虑 x ∈ π − 1 ( A r ) x \in \pi^{-1}(A_r) x ∈ π − 1 ( A r ) ,有
∣ { x ∈ π − r ( A r ) : all folding checks hold for f 0 , … , f r } ∣ ∣ D 0 ∣ = 1 ∣ D 0 ∣ ⋅ ∑ y ∈ A r + 1 δ ( y ) ⋅ ∣ π − ( r + 1 ) ( y ) ∣ = 2 r + 1 ∣ D 0 ∣ ⋅ ∑ y ∈ A r + 1 δ ( y ) = 1 ∣ D r + 1 ∣ ⋅ ∑ y ∈ A r + 1 δ ( y ) = ν r ( A r + 1 ) \begin{aligned}
& \frac{|\{x \in \pi^{-r}(A_r): \text{all folding checks hold for } f_0, \ldots, f_r \}|}{|D_0|} \\
& = \frac{1}{|D_0|} \cdot \sum_{y \in A_{r+1}} \delta(y) \cdot |\pi^{-(r+1)}(y)| \\
& = \frac{2^{r + 1}}{|D_0|} \cdot \sum_{y \in A_{r+1}} \delta(y) \\
& = \frac{1}{|D_{r + 1}|} \cdot \sum_{y \in A_{r+1}} \delta(y) \\
& = \nu_r(A_{r+1})
\end{aligned} ∣ D 0 ∣ ∣ { x ∈ π − r ( A r ) : all folding checks hold for f 0 , … , f r } ∣ = ∣ D 0 ∣ 1 ⋅ y ∈ A r + 1 ∑ δ ( y ) ⋅ ∣ π − ( r + 1 ) ( y ) ∣ = ∣ D 0 ∣ 2 r + 1 ⋅ y ∈ A r + 1 ∑ δ ( y ) = ∣ D r + 1 ∣ 1 ⋅ y ∈ A r + 1 ∑ δ ( y ) = ν r ( A r + 1 ) 前面通过 correlated agreement 定理已经得到 ν r ( A r + 1 ) ≥ α \nu_r(A_{r+1}) \ge \alpha ν r ( A r + 1 ) ≥ α ,因此在 D 0 D_0 D 0 中的 x x x 能满足 folding check 的比例超过 α 。综合在第 r r r 轮的 sumcheck 约束以及折叠关系,得到 ( f 0 , Λ 0 , … , f r , Λ r ) (f_0, \Lambda_0, \ldots, f_r, \Lambda_r) ( f 0 , Λ 0 , … , f r , Λ r ) 对于 ( λ 0 , … , λ r ) (\lambda_0, \ldots, \lambda_r) ( λ 0 , … , λ r ) 是 α -good 的。由于产生这样的 trace 的集合的概率
Pr [ T ] > ε 0 + … + ε r \operatorname{Pr}[\mathfrak{T}]>\varepsilon_0+\ldots+\varepsilon_r Pr [ T ] > ε 0 + … + ε r 因此其满足引理的条件,由归纳假设,在第 r r r 轮引理成立,因此可以得到结论,( g 0 , … , g M ) ∈ R (g_0, \ldots, g_M) \in \mathcal{R} ( g 0 , … , g M ) ∈ R ,至此就证明了在第 r + 1 r + 1 r + 1 轮引理也是成立的。从而得证引理成立。\Box
References ¶ [H24] Ulrich Haböck. “Basefold in the List Decoding Regime.” Cryptology ePrint Archive (2024).